﻿ dndxnlogx is equal to | Limits and Derivatives

## Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

## Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

## Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.

# Limits and Derivatives

#### Multiple Choice Questions

1.

• ${\mathrm{log}}_{\mathrm{e}}\left(\frac{\mathrm{\pi }}{2}\right)$

• ${\mathrm{log}}_{\mathrm{e}}\left(2\right)$

• ${\mathrm{log}}_{\mathrm{e}}\left(\mathrm{a}\right)$

• a

C.

${\mathrm{log}}_{\mathrm{e}}\left(\mathrm{a}\right)$

2.

The value of  is

• $\frac{1}{2}$

• 1

• 2

• None of these

A.

$\frac{1}{2}$

3.

is equal to

• e12

• e- 12

• e4

• e3

B.

e- 12

4.

equals

• $\frac{10}{3}$

• $\frac{3}{10}$

• $\frac{6}{5}$

• $\frac{5}{6}$

A.

$\frac{10}{3}$

5.

If the normal to the curve y = f(x) at (3, 4) makes an angle $\frac{3\mathrm{\pi }}{4}$ with the positive x-axis, then f'(3) is equal to :

• - 1

• $\frac{3}{4}$

• 1

• $\frac{3}{4}$

A.

- 1

# 6.$\frac{{d}^{\mathrm{n}}}{d{\mathrm{x}}^{\mathrm{n}}}\left(\mathrm{log}\left(\mathrm{x}\right)\right)$ is equal to

D.

Let y = log(x)

On differentiating w.r.t. x from 1 to n times, we get

7.

If  then the values of a and b, are

D.

117 Views

8.

The value of  is

• $\mathrm{log}\left(2\right)$

• $\mathrm{log}\left(6\right)$

• 1

• $\mathrm{log}\left(3\right)$

B.

$\mathrm{log}\left(6\right)$

We know that,

9.

is equal to

• ${\mathrm{log}}_{\mathrm{e}}\left(\frac{\mathrm{a}}{\mathrm{b}}\right)$

• ${\mathrm{log}}_{\mathrm{e}}\left(\frac{\mathrm{b}}{\mathrm{a}}\right)$

• ${\mathrm{log}}_{\mathrm{e}}\left(\mathrm{ab}\right)$

A.

${\mathrm{log}}_{\mathrm{e}}\left(\frac{\mathrm{a}}{\mathrm{b}}\right)$

10.

The solution of the differential equation    satisfying the condition y (1) = 1 is

• y = ln x + x

• y = x ln x + x2

•  y = xe(x−1)

•  y = xe(x−1)

D.

y = xe(x−1)

y = vx

Since, y (1) = 1, we have y = x log x + x

128 Views