જો  from Mathematics શ્રેણિક

Book Store

Download books and chapters from book store.
Currently only available for.
CBSE

Subject

Mathematics
Advertisement
zigya logo

Gujarati JEE Mathematics : શ્રેણિક

Multiple Choice Questions

1.

જો bold A bold space bold equals bold space open square brackets table row cell bold alpha to the power of bold 2 end cell bold 5 row bold 5 cell bold minus bold alpha end cell end table close square brackets bold space bold અન ે bold space open vertical bar table row cell bold A to the power of bold 10 end cell end table close vertical bar bold space bold equals bold space bold 1024 bold space bold હ ો ય bold space bold ત ો bold space bold alpha bold space bold equals bold space bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold.

  • -2

  • 2

  • 3

  • -3


2.
જો A અને B એ nn એવ ચોરસ શ્રેણિકો હોય, કે જેથી A2-B2=(A-B)(A+B), તો નીચેના પૈકી કયું હંમેશા સત્ય છે ? 
  • AB=BA

  • A અથવા B શુન્ય શ્રેણિક છે.

  • A = B

  • A અથવા B એકમ શ્રેણિક છે. 


3.

જો તો નીચે bold A bold space bold equals bold space open vertical bar table row bold 0 bold 0 bold 1 row bold 0 cell bold minus bold 1 end cell bold 0 row cell bold minus bold 1 end cell bold 0 bold 0 end table close vertical bar bold space પૈકીનું કયું સત્ય છે ? 

  • A2 = I 

  • A શુન્ય શ્રેણિક છે. 

  • A-1અસ્તિત્વ નથી 

  • A (-1) I 


4.

ધારો કે A એ 2×2 શ્રેણિક છે.

વિધાન 1 : adj (adj A) = A
વિધાન 2 : adj A = A

  • વિધાન 1 સત્ય છે; વિધાન 2 એ સત્ય છે. વિધાન 2 એ વિધાન 1 ની સાચી સમજૂતી આપે છે.

  • વિધાન 1 સત્ય છે તથા વિધાન 2 સત્ય છે. વિધાન 2 એ વિધાન 1 ની સાચી સમજૂતી નથી. 

  • વિધાન 1 સત્ય છે તથા વિધાન 2 અસત્ય છે. 

  • વિધાન 1 અસત્ય છે તથા વિધાન 2 સત્ય છે.


Advertisement
5.
જો bold A bold space bold equals bold space open square brackets table row bold 1 bold 0 row bold 1 bold 1 end table close square brackets bold space bold અન ે bold space bold I bold space bold equals bold space open square brackets table row bold 1 bold 0 row bold 0 bold 1 end table close square bracketsતો ગણિતિય અનુમાનના સિદ્ધાંતથી નીચેના પૈકી કયું સત્ય છે ? (n ≥ 1)
  •  An = nA + (n-1)I

  • An - nA - (n-1)I 

  • An = 2n-1 A-(n-1)I 

  • An = 2n-1 = nA + (n -1)I


6. જો A2 - A + I = 0 તો A નો વ્યસ્ત ......... છે. 
  • A

  • I-A 

  • A+I 

  • A-I 

Advertisement
7. જો bold A bold space bold equals open square brackets table row bold a bold b row bold b bold a end table close square brackets bold space bold A to the power of bold 2 bold space bold equals bold space open square brackets table row bold alpha bold beta row bold beta bold alpha end table close square brackets bold space bold ત ો bold space bold. bold. bold. bold. bold. bold. bold. bold.
  • α= 2ab, β = a2 + b2 

  • α= a2 + b2, β= ab

  • α= a2 + b2, β = a2 - b

  • α= a2 + b2, β = 2ab 


D.

α= a2 + b2, β = 2ab 

Tips: -

bold A to the power of bold 2 bold space bold equals bold space bold A bold space bold times bold space bold A bold space bold equals bold space open square brackets table row bold a bold b row bold b bold a end table close square brackets bold space open square brackets table row bold a bold b row bold b bold a end table close square brackets bold space bold equals bold space open square brackets table row cell bold a to the power of bold 2 bold plus bold b to the power of bold 2 end cell cell bold 2 bold ab end cell row cell bold 2 bold ab end cell cell bold a to the power of bold 2 bold plus bold b to the power of bold 2 end cell end table close square brackets
open square brackets table row bold alpha bold beta row bold beta bold alpha end table close square brackets bold space bold equals bold space bold space open square brackets table row cell bold a to the power of bold 2 bold plus bold b to the power of bold 2 end cell cell bold 2 bold ab end cell row cell bold 2 bold ab end cell cell bold a to the power of bold 2 bold plus bold b to the power of bold 2 end cell end table close square brackets

bold therefore bold space bold alpha bold space bold equals bold space bold a to the power of bold 2 bold space bold plus bold space bold b to the power of bold 2 bold comma bold space bold beta bold space bold equals bold space bold 2 bold ab

Advertisement
8.

ધારો કે A એ 2 × 2 શ્રેણિક છે, I એ 2 × 2 એકમ શ્રેણિક છે. શ્રેણિકના વિકર્ણના ઘટકોના સરવાળાને tr (A) વડે દર્શાવીએ તથા A2 = I

વિધાન 1 : જો A # I અને A # -I તો open vertical bar table row bold A end table close vertical bar= -1
વિધાન 2 : જો A # I અને A # I તો tr(A) # 0

  • વિધાન 1 સત્ય છે; વિધાન 2 એ સત્ય છે. વિધાન 2 એ વિધાન 1 ની સાચી સમજૂતી આપે છે.

  • વિધાન 1 સત્ય છે તથા વિધાન 2 સત્ય છે. વિધાન 2 એ વિધાન 1 ની સાચી સમજૂતી નથી. 

  • વિધાન 1 સત્ય છે તથા વિધાન 2 અસત્ય છે. 

  • વિધાન 1 અસત્ય છે તથા વિધાન 2 સત્ય છે.


Advertisement
9.

જો bold A bold space bold equals bold space open square brackets table row bold 1 bold 2 row bold 3 bold 4 end table close square brackets bold space bold અન ે bold space bold B bold space bold equals bold space open square brackets table row bold a bold 0 row bold 0 bold b end table close square brackets bold comma bold space bold a bold comma bold space bold b bold element of bold N bold space bold ત ો

  • અસિમિત સંખ્યામાં B મળે કે જેથી AB = BA

  • એક B મળે કે જેથી AB = BA 

  • એક કરતાં વધુ પરંતુ સિમિત સંખ્યામાં B મળે જે જેથી AB = BA

  • AB = BA થાય, તેવો B મળે નહિ 


10.
ધારો કે, bold A bold space bold equals bold space open square brackets table row bold 1 cell bold minus bold 1 end cell bold 1 row bold 2 bold 1 cell bold minus bold 3 end cell row bold 1 bold 1 bold 1 end table close square brackets bold space bold અન ે bold space bold 10 bold space bold B bold space bold equals bold space open square brackets table row bold 4 bold 2 bold 2 row cell bold minus bold 5 end cell bold 0 bold alpha row bold 1 cell bold minus bold 2 end cell bold 3 end table close square brackets bold commaઅને જો B એ A નો વ્યસ્ત શ્રેણિક હોય તો α = ........ 
  • -1

  • 5

  • -1

  • -2


Advertisement

Switch