
Physics

In the circuit shown $R_{s}=40$, $R_{s}=R_{s}=15$, $R_{s}=30$, $R_{s}=30$, $R_{s}=10$, R

Answer

Given, R_1 = 4 Ω , R_2 = R_3 = 15 Ω , R_4 = 30 Ω and E = 10 V

Here, R_2 , R_3 and R_4 are connected parallel to each other.

Therefore, equivalent resistance is given by,

$$\frac{1}{R} = \frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4}$$
$$= \frac{1}{15} + \frac{1}{15} + \frac{1}{30}$$

 \Rightarrow R = 6Ω is the effective resistance.

Now, R₁ is in series with R. So, equivalent resistance is given by,

$$R_{eq} = R + R_1$$
$$= 6 + 4$$
$$= 10 \Omega$$

 $I_1 = \frac{E}{R_{eq}} = \frac{10}{10} = 1 A$ Current I_1 is given by, ... (1)

This current is divided at A into three parts I_2 , I_3 , I_4 .

$$\therefore I_2 + I_3 + I_4 = 1 \qquad ... (2)$$

Also,

Also,

$$I_2R_2 = I_3R_3 = I_4R_4$$

$$\Rightarrow$$
 $I_2 \times 15 = I_3 \times 15 = I_4 \times 30$

$$\Rightarrow I_2 = I_3 = 2I_4$$
 ... (3)

 $2l_4 + 2l_4 + l_4$ Study Assignments, Solved Previous Year Papers . Questions and Answers. Free Forever.

$$I_2 = I_3 = 2 \times 0.2 = 0.4$$

Thus,
$$I_1 = 1A$$
, $I_2 = I_3 = 0.4$ A and $I_4 = 0.2$ A.