zigya tab
Advertisement

Io, one of the satellites of Jupiter, has an orbital period of 1.769 days and the radius of the orbit is 4.22 × 108 m. Show that the mass of Jupiter is about one-thousandth that of the sun.


Orbital period of  I0 , TI0 = 1.769 days 

                                     =  1.769 × 24 × 60 × 60 s 

Orbital radius of  I0 , RI0 = 4.22 × 108 m 

Satellite I0 is revolving around the Jupiter 

Mass of the Jupiter is given by, 

MJ = 4π2RI03 / GTI02                         ...(i) 

where, 

MJ = Mass of Jupiter, 

G = Universal gravitational constant,

Orbital period of the earth,

T= 365.25 days

    = 365.25 × 24 × 60 × 60 s 

Orbital radius of the Earth,

R
= 1 AU = 1.496 × 1011 

Mass of sun is given as, 

Ms = 4π2Re3 / GTe                           ...(ii) 

Therefore,

Ms / MJ  = 

             =  

Substituting the values, 

=

 = 1045.04

∴ Ms / MJ  ~ 1000 

           M~ 1000 × M

Hence, it can be inferred that the mass of Jupiter is about one-thousandth that of the Sun.
232 Views

Advertisement

Does the escape speed of a body from the earth depend on
(a) the mass of the body,
(b) the location from where it is projected,
(c) the direction of projection,
(d) the height of the location from where the body is launched?


Escape velocity is given by, 

straight v subscript straight e equals square root of 2 gr end root space equals space square root of fraction numerator 2 GM over denominator straight r end fraction end root

space space space equals square root of fraction numerator 2 GM over denominator straight R plus straight h end fraction end root

where,

g is the acceleration due to gravity at the point from where the body is projected,

r is the distance from the centre of the earth from where the body is projected, and

h is the height from the surface of the earth.

(a) Escape velocity, ve does not depend on the mass of the body.

(b) Escape velocity, ve depends on upon g and at different locations g is different (gλ = g - Rω2cos2 λ ), therefore, ve slightly depends on upon the angle of latitude ( ∵ Rωcos 2 λ ≤ 3.36 cm/s2).

(c) Escape velocity, ve does not depend on upon the direction of projection. 

(d) Escape velocity, ve depends on upon height from the surface of the earth. 

336 Views

 Does the escape speed of a body from the earth depend on: 
(a) the mass of the body, 

(b) the location from where it is projected, 

(c) the direction of projection, 

(d) the height of the location from where the body is launched?


The escape velocity is independent of the mass of the body and the direction of projection. It depends upon the gravitational potential at the point from where the body is launched. Gravitational potential depends slightly on the latitude and height of the point, therefore, the escape velocity depends on these factors. 
135 Views

Let us assume that our galaxy consists of 2.5 × 1011stars each of one solar mass. How long will a star at a distance of 50,000 ly from the galactic centre take to complete one revolution? Take the diameter of the Milky Way to be 105 ly.

Mass of our galaxy Milky Way, M = 2.5 × 1011 solar mass 

Solar mass = Mass of Sun = 2.0 × 1036 kg 

Mass of our galaxy, M = 2.5 × 1011 × 2 × 1036 

                                = 5 × 10
41 kg 

Diameter of Milky Way, d = 105 ly 

Radius of Milky Way, r = 5 × 104 ly 

                           1 ly = 9.46 × 1015 m 

∴                             r = 5 × 104 × 9.46 × 1015 

                                 = 4.73 ×1020 m
 

A star revolves around the galactic centre of the Milky Way.

Time period is given by the relation, 

=  

    =  

   =  

    = 1.12 × 1016 s   

1 year = 365 × 324 × 60 × 60 s 

       1s = years 

Therefore,

1.12 × 10
16 s =

                      =  3.55 × 10
8 years. 
146 Views

Suppose there existed a planet that went around the sun twice as fast as the earth.What would be its orbital size as compared to that of the earth?

Time taken by the Earth to complete one revolution around the Sun, 

                   Te = 1 year 

Orbital radius of the Earth in its orbit, R= 1 AU 

Time taken by the planet to complete one revolution around the Sun, TP = ½Te 

                                              = ½ year 

Orbital radius of the planet = Rp
 

From Kepler’s third law of planetary motion,

  

Hence, the orbital radius of the planet will be 0.63 times smaller than that of the Earth.
147 Views

Advertisement