zigya tab
Advertisement

A steel wire of length 4.7 m and cross-sectional area 3.0 × 10-5 m2 stretches by the same amount as a copper wire of length 3.5 m and cross-sectional area of 4.0 × 10–5 m2 under a given load. What is the ratio of the Young’s modulus of steel to that of copper?


Length of steel wire, L= 4.7m
Length of copper wire, Lc=3.5m
Area of cross-section of steel wire, As=3.0 x 10-5 m2
Area of copper wire, A= 4.0 x 10-5 m

To find = the ratio of Young's modulus of steel to that of copper?

ΔLs=ΔLc  and  Fs=FcYoung's modulus is given by, Y=FALΔL          YsYc=FsAsLsΔLsAcFcΔLcLc                   = LsLcAcAs                   =4.7×4.0×10-53.5×3.0×10-5                   =1.8

425 Views

Advertisement
A steel wire of length 4.7 m and cross-sectional area 3.0 × 10–5 m2 stretches by the same amount as a copper wire of length 3.5 m and cross-sectional area of 4.0 × 10–5 m2under a given load. What is the ratio of the Young’s modulus of steel to that of copper?

Length of the steel wire, L1 = 4.7 m

Area of cross-section of the steel wire, A1 = 3.0 × 10–5 m2

Length of the copper wire, L2 = 3.5 m

Area of cross-section of the copper wire, A2 = 4.0 × 10–5 m2

Change in length = ΔL1 = ΔL2 = Δ

Force applied in both the cases = F


Young ’ straight s space modulus space of space the space steel space wire space is comma space

straight Y subscript 1 space end subscript equals space open parentheses fraction numerator straight F subscript 1 space end subscript over denominator space straight A subscript 1 end fraction close parentheses open parentheses straight L subscript 1 over ΔL subscript 1 close parentheses

space space space space space space equals open parentheses fraction numerator straight F over denominator 3 space straight X space 10 to the power of negative 5 end exponent end fraction close parentheses space open parentheses fraction numerator 4.7 over denominator ΔL end fraction close parentheses space space space space space space space space space... space left parenthesis straight i right parenthesis

Young apostrophe straight s space modulus space of space the space copper space wire comma space

straight Y subscript 2 space end subscript equals space open parentheses fraction numerator straight F subscript 2 space over denominator straight A subscript 2 end fraction close parentheses open parentheses fraction numerator straight L subscript 2 over denominator space ΔL subscript 2 end fraction close parentheses space

space space space space equals space open parentheses fraction numerator straight F over denominator 4 space cross times space 10 to the power of negative 5 end exponent end fraction close parentheses open parentheses fraction numerator 3.5 space over denominator space ΔL end fraction close parentheses space space space space space space space... space left parenthesis ii right parenthesis

Now, dividing equation (1) by (2), we get

straight Y subscript 1 over straight Y subscript 2 space equals space open parentheses fraction numerator 4.7 space cross times space 4 space cross times space 10 to the power of negative 5 end exponent over denominator 3 space cross times space 10 to the power of negative 5 end exponent space cross times space 3.5 end fraction close parentheses equals space 1.79 colon 1

The space ratio space of space young apostrophe straight s space modulus space of space steel space to space that
space of space copper space is space 1.79 colon 1.
222 Views

Read the following two statements below carefully and state, with reasons, if it is true or false.
(a) The Young’s modulus of rubber is greater than that of steel;
(b) The stretching of a coil is determined by its shear modulus.


a) False, because the modulus of elasticity is inversely proportional to the strain for a given stress. If steel and rubber are under the same stress, then strain in steel is less than rubber. Hence steel is more elastic than rubber.

(b) True, because the change takes place in the shape of the coil spring. Therefore, stretching is determined by its shear modulus. 

466 Views

Figure 9.11 shows the strain-stress curve for a given material. What are (a) Young’s modulus and (b) approximate yield strength for this material?


(a)

It is clear from the given graph that for stress 150 × 10
6N/m2, strain is 0.002.

∴ Young’s modulus, Y = Stress / Strain

                            = 150 × 106 / 0.002 

                            =  7.5 × 10
10 Nm-2 

Hence, Young’s modulus for the given material is 7.5 ×1010N/m2

(b)

The yield strength of a material is the maximum stress that the material can sustain without crossing the elastic limit.

It is clear from the given graph,

The approximate yield strength of this material = 300 × 10
6 Nm/2 

                                                                 =3 × 10
8 N/m2
185 Views

Two wires of diameter 0.25 cm, one made of steel and the other made of brass are loaded as shown in Fig. 9.13. The unloaded length of steel wire is 1.5 m and that of brass wire is 1.0 m. Compute the elongations of the steel and the brass wires.


Given, 
Diameter of the wires = 0.25 cm
That is, d= d= 0.25 cm

Therefore, 
Radius of the wires will be given by, 

rs = rB = 0.125  cm = 1.25 ×10-4 m

Unloaded length of the steel wire, Ls=1.5 m
Unloaded length of the brass wire, L= 1 m

Young's modulus of steel, Ys = 2 × 1011 Pa
Young's modulus of brass, YB0.91 × 1011 Pa
m1 = 4 kg and m2 = 6 kg

Brass wire is under a tension of load 6 kg.

Therefore, increase in length is given by

Ls = FAsLBYB= 6×9.8×10π (1.25×10-4)2 × 0.91×1011 m 
Since, brass wire is under a tension of load 6 kg.

"
Steel wire is under a tension of 10 kg load. 

Therefore, elongation of length of the wire, 

 LS = FAsLsYs               = 10×9.8×1.5π (1.25×10-4)2 × 1011m               = 1.5 × 10-4 m

262 Views

Advertisement