In a plane electromagnetic wave, the electric field oscillates sinusoidally at a frequency of 2.0 × 1010 Hz and amplitude 48 V m-1.
(a)    What is the wavelength of the wave?
(b)    What is the amplitude of the oscillating magnetic field?
(c)    Show that the average energy density of the E field equals the average energy density            of the B field, [c = 3 × 108 m s-1]


Here,          Frequency of the plane EM wave, v = 2 × 1010HzAmplitude of electric field,  E0 = 48 Vm-1  

Therefore, 

Wavelength of the wave, 

λ = cv =3 × 1082 × 1010m = 1.5 × 10-2m 

Amplitude of oscillating magnetic field,

B0 = E0c = 483 × 108T = 1.6 × 10-7T 

Energy density in electric field, 

         μE = 12 ε0 E2

Energy density in magnetic field,
         μB = 12μ0B2 

Using the relation, we have 

                E = cB,  uE = 12 ε0 (cB)2     = c2 12 ε0 B2 

But,           c = 1μ0 ε0 

 μE = 1μ0 ε012ε0B2 = 12μ0B2 = μB 
Hence, the average energy density of electric field equals the average energy density of magnetic field.

609 Views

Advertisement

A parallel plate capacitor (Fig.) made of circular plates each of radius R = 6.0 cm has a capacitance C = 100 pF. The capacitor is connected to a 230 V ac supply with a (angular) frequency of 300 rad s-1.
(a)    What is the rms value of the conduction current?
(b)    Is the conduction current equal to the displacement current?
(c)    Determine the amplitude of B at a point 3.0 cm from the axis between the plates.



Given, a parallel plate capacitor made of circular plates.

(a) Here,
Radius of the circular plate, R = 6.0 cm
 Capacitance of the plates, C = 100 ρF = 100 × 10-12FAngular frequency, ω = 300 rad s-1

Erms = 230 V

Therefore, 

           Irms = ErmsXC = Erms1ωC = Erms × ωC 

        Irms  = 230 × 300 × 100 × 10-12
                 = 6.9 × 10-6A = 6.9 μA 

(b) Yes, the conduction current is equal to the displacement current.

I = ID,  whether conduction current, I is steady d.c. or a.c. This can be shown below :

          ID = ε0d(ϕE)dt = ε0 ddt(EA)       ϕE = EA

      ID = ε0AdEdt
            = ε0AddtQε0A       E = σε0 = Qε0A 
     ID = ε0A × 1ε0AdQdt    = dQdt = I
(c) We know that, 

                      B = μ02πrR2ID 

This formula goes through even if displacement current, ID (and therefore magnetic field B) oscillates in time. The formula above shows that they oscillate in phase.
Since I
D = I, we have
                      B = μ0rI2πR2 

If I = I0, the maximum value of current, then
Amplitude of B = maximum value of B 

= μ0rI02πR2  = μ0r2Irms2πR2                          I0 = 2 Irms= 4π × 10-7 × 0.03 × 2 × 6.9 × 10-62 × 3.14 × (0.06)2T= 1.63 × 10-11T.

1268 Views

Advertisement
Suppose that the electric field amplitude of an electromagnetic wave is E0 = 120 N/C and that its frequency is v = 50.0 MHz. (a) Determine, B0, ω, k, and λ. (b)    Find expressions for E and B.

(a) (i)        
(a) (i)        or                               

or              straight B subscript 0 space equals space straight E subscript 0 over straight C space equals space fraction numerator 120 over denominator 3 space cross times space 10 to the power of 8 end fraction straight T

                      equals space 40 space cross times space 10 to the power of negative 8 end exponent straight T space equals space 400 space cross times space 10 to the power of negative 9 end exponent straight T space equals space 400 space nT

(ii)    box enclose straight omega space equals space 2 straight pi space straight v end enclose space equals space 2 straight pi space cross times space 50 space cross times space 10 to the power of 6 space equals space 3.14 space cross times space 10 to the power of 8 space rad space straight s to the power of negative 1 end exponent

(iii)    box enclose straight k space equals space fraction numerator 2 straight pi over denominator straight lambda end fraction end enclose space equals space fraction numerator 2 straight pi space straight v over denominator vλ end fraction space equals space fraction numerator 2 straight pi space straight v over denominator straight C end fraction space equals straight omega over straight C space equals space fraction numerator straight pi space cross times space 10 to the power of 8 over denominator 3 space cross times space 10 to the power of 8 end fraction rad space straight m to the power of negative 1 end exponent

                equals space straight pi over 3 rad space straight m to the power of negative 1 end exponent space equals space 1.05 space rad space straight m to the power of negative 1 end exponent
(iv)     box enclose straight C equals space vλ semicolon end enclose space space space straight lambda space equals space straight C over straight v space equals space fraction numerator 3 space cross times space 10 to the power of 8 over denominator 50 space cross times space 10 to the power of 6 end fraction straight m space equals space 300 over 50 space equals space 6 straight m.
(b) Let the electromagnetic wave travel along +x-axis, and straight E with rightwards arrow on top space and space straight B with rightwards arrow on top are along y-axis and z-axis respectivelty. Then,
box enclose stack straight E subscript straight y with rightwards arrow on top space equals space straight E subscript 0 space sin space left parenthesis kx minus ωt right parenthesis space straight j with overparenthesis on top end enclose
       equals space 120 space sin left parenthesis 1.05 space straight x space minus space 3.14 space cross times space 10 to the power of 8 straight t right parenthesis space straight j with hat on top space NC to the power of negative 1 end exponent
stack straight B subscript straight z with rightwards arrow on top space equals space straight B subscript 0 space sin space left parenthesis kx space minus space ωt right parenthesis space straight k with hat on top
space space space space space space equals space 400 space sin space left parenthesis 1.05 straight x space minus space 3.14 space cross times space 10 to the power of 8 space straight t right parenthesis straight k with overparenthesis on top space nT
          

283 Views

Figure shows a capacitor made of two circular plates each of radius 12 cm, and separated by 5.0 mm. The capacitor is being charged by an external source (not shown in the figure). The charging current is constant and equal to 0.15A.
(a)    Calculate the capacitance and the rate of charge of potential difference between the plates.

(b)    Obtain the displacement current across the plates.

(c)    Is Kirchhoff's first rule (junction rule) valid at each plate of the capacitor? Explain.

(a) Given,
Radius of capacitor plates, r = 12 cm = 0.12 m

distance between the plates, d = 5.0 mm = 5 × 10-3m

Charge carried, I = 0.15 A

Permittivity of medium, ε0 = 8.85 × 10-12 C2 N-1 m2

∴ Area of cross-section of plates, A = πR2 = 3.14 × (0.12)2 m

Capacitance of parallel plate capacitor is given by
                        C = ε0Ad         = 8.85 × 10-12× (3.14) × (0.12)25 × 10-3         = 80.1 × 10-12 = 80.1 pF

Now, charge on capacitor plate, q = CV 

                dqdt = C × dVdt

                     I = C × dVdt               I = dqdt 

                        dVdt = IC = 0.1580.1 × 10-12                      

                           = 1.87 × 109Vs-1 

(b) Displacement current is equal to the conduction current i.e., 0.15 A.

(c) Yes, Kirchhoff's first rule is valid at each plate of the capacitor provided. We take the current to be the sum of the conduction and displacement currents.

2073 Views

The terminology of different parts of the electromagnetic spectrum is given in the text. Use the formula E = hv (for energy of a quantum of radiation: photon) and obtain the photon energy in units of eV for different parts of the electromagnetic spectrum. In what way are the different scales of photon energies that you obtain related to the sources of electromagnetic radiation.

Energy of photon, E = hv

This implies,         E = hCλ 

where,
h = 6.62 × 10-34js and,c = 3 × 108 m s-1 

If wavelength λ is in metre and energy is in Joule, then we will divide E by 1.6 × 10-19 to convert into eV (electron volt).

  E = hcλ × 1.6 × 10-19eV 

(1) For y-rays, wavelength ranges from 10-10 m to less that 10 -14 m.

  Energy = 6.62 × 10-34 × 3 × 10810-10 × 1.6 × 10-19eV
               = 12.4 ×103 eV   104 eV 
Thus for, 

λ = 10-10m,    energy  = 104 eV. and
λ = 10-14m,    energy = 108 eV. 

i.e., Energy of γ-rays ranges between 104 to 108 eV.

(2) For X-rays, wavelength ranges from 10-8 m to 10-13 m. 

For λ = 10-8
 Energy = 6.62 × 10-34 × 3 × 10810-8 × 1.6 × 10-19eV              = 124  102 eV 

λ = 10-13m,   energy = 107 eV.

(3) For ultraviolet radiations, λ ranges from 4 × 10-7 m to 6 × 10-10 m. 

Therefore, 

For λ = 4 × 10-7
Energy = 6.62 × 10-34 × 3 × 1084 × 10-7 × 1.6 × 10-19eV              = 3.1  eV  1010eV  

λ = 6 × 10-10 m , Energy = 103 eV

Energy of ultraviolet radiations vary between 1010 to 103 eV.

(4) For visible radiations, wavelength ranges from 4 × 10-7 m to 7 × 10-7 m.

Therefore, 

For λ = 4 × 10-7, energy = 1010 eV (same as above) 

For,  λ = 7 ×10-7 ;
Energy = 6.62 × 10-34 × 3 × 1087 × 10-7 × 1.6 × 10-19eV 

          = 1.77 eV  100 eV

(5) For infrared radiations, λ ranges from 7 × 10-7 m to 7 × 10-14 m. 

Therefore, 

For λ = 7 × 10-7, Energy = 100 eV  (as proved above) 
For λ = 7 × 10-4 , energy is   11000times.
i.e., of the order of 10-3 eV. 

(6) For micro waves, λ ranges from 1 mm to 0.3 m.
For  λ = 1 mm  or  10-3, 
Energy is equal to    E = 6.62 × 10-34 × 3 × 10810-3 × 1.6 × 10-19eV
  = 1.24 × 10-3 eV   10-3 eV.
Forλ = 0.3 m, Energy = 4.1 × 10-6eV  10-6 eV.             
(7) For radio waves, λ ranges from 1 m to few km.
For λ = 1 m,
Energy is equal to    E = 6.62 × 10-34 × 3 × 108100 ×1.6 × 10-19eV
  = 1.24 × 10-6eV  10-6eV. 

Energy for λ of the order of few km ≈ 10-6 ev.

Energy of a photon that a source produces indicates, the spacing of relevant energy levels of the source.

      
                       
182 Views

Advertisement