zigya tab
The energy flux of sunlight reaching the surface of the earth is 1.388 x 103 W/m2. How many photons (nearly) per square metre are incident on the earth per second? Assume that the photons in the sunlight have an average wavelength of 550 nm.

Energy flux of sunlight = Total energy per square metre per second = 1.388 x 103 Wm–2 

Energy of each photon is given by,

                       E = hcλ 
Therefore, 
 Power of each photon, P  = nE                                               = 6.63 × 10-34× 3 × 108550 × 10-9J                                              = 3.62 × 10-19J 
Number of photons incident on earth's surface per square metre per second is, 

= Total energy per square metre per secondEnergy of one photon 

= 1.388 × 1033.62 × 10-19 = 3.8 × 1021.

198 Views

A 100 W sodium lamp radiates energy uniformly in all directions. The lamp is located at the centre of a large sphere that absorbs all the sodium light which is incident on it. The wavelength of the sodium light is 589 nm. (a) What is the energy per photon associated with the sodium light? (b) At what rate are the photons delivered to the sphere?

Given,
Power, P (power) = 100 W
Wavelength of sodium light, λ = 589 x 10–9 m 

(a) Energy of each photon assosciated with the sodium light,
                E = hv = hcλ    =6.63 × 10-34 × 3 × 108589 × 10-9J 

           E = 3.38 × 10-19J 

(b) Number of photons delivered to sphere per second, 
As,              P= nE

                 n = Energy radiated per secondEnergy of each proton     

                 n = 1003.38 × 10-19    = 3 × 1020 photon/s.

229 Views

In an experiment on photoelectric effect, the slope of the cut-off voltage versus frequency of incident light is found to be 4.12 x 10–15 Vs.
Calculate the value of Planck's constant.


The slope of the cut-off voltage versus frequency of incident light is given as, 

                    Vν = 4.12 × 10-15Vs           = 4.12 × 10-15 J.s.C 

When we multiply this result with the charge of an electron, which is the fundamental charge (e = 1.6 x 10–19 C) we get, 

                     E = hv
                 h = Ev = J.s.
                 h = 4.12 × 10-15 × 1.6 × 10-19 

i.e.,                h = 6.592 × 10-34Js. 

is the value of the planck's constant.
280 Views

The threshold frequency for a certain metal is 3.3 x 1014 Hz. If light of frequency 8.2 x 1014 Hz is incident on the metal, predict the cut-off voltage for the photoelectric emission.

Given,
Threshold frequency, v
0 = 3.3 x 1014 Hz
Frequency of light, v = 8.2 x 10
14 Hz
Planck's constant, h = 6.63 x 10
–34 Js

Using Einstein's photoelectric equation,
           12mv2max = h(v-v0) = eV0

                  V0 = h(v-v0)e
                  V0 = 6.62 × 10-341.6 × 10-19(8.2 × 1014 - 3.3 × 1014) 

i.e.,                V0 = 2.03 V. 

is the required cut=off voltage for photoelectric emission.
1085 Views

Advertisement

Monochromatic light of wavelength 632.8 nm is produced by a helium-neon laser. The power emitted is 9.42 mW.
a.) Find the energy and momentum of each photon in the light beam. 

b.) How many photons per second, on the average arrive at a target irradiated by this beam?

c.) How fast does a hydrogen atom have to travel in order to have the same  momentum as that of the photon?


Given,
Wavelength of monochromatic light, λ = 632.8 nm = 632.8 x 10
–9 m
 Frequency, v = cλ = 3 × 108632.8 × 10-9Hz 

                                 = 4.74 × 1014Hz

(a) Energy of a photon, E = hv

                                       = 6.63 × 10-34× 4.74 × 1014J= 3.14 × 10-19J.

Momentum of each photon, p (momentum) = hλ                            = 6.63 × 10-34632.8 × 10-9                              = 1.05 × 10-27 kg ms-1 

(b) Power emitted, P = 9.42 mW = 9.42 x 10–3 W
Now, P = nE  

This implies, 

n = PE = 9.42 × 10-3W3.14 × 10-19J                = 3 × 1016 photons/sec. 
Thus, these many number of protons arrive at the target.

(c) Velocity of hydrogen atom 

                    = Momentum 'p' of H2 atom (mv)Mass of H2 atom(m) 

                  v = 1.05 × 10-271.673 × 10-27ms-1   

                    = 0.63 ms-1. 
Thus, the hydrogen atom travel at a speed of 0.63 m/s  to have the same  momentum as that of the photon.
360 Views

Advertisement
Advertisement