Show graphically how the vapour pressure of a solvent and a solution in it of a non-volatile solute change with temperature. Show on this graph the boiling points of the solvent and the solution. Which is higher and why? from Chemistry Solutions Class 12 Nagaland Board
Zigya Logo

Chapter Chosen

Solutions

Book Chosen

Chemistry I

Subject Chosen

Chemistry

Book Store

Download books and chapters from book store.
Currently only available for.
CBSE Gujarat Board Haryana Board

Previous Year Papers

Download the PDF Question Papers Free for off line practice and view the Solutions online.
Currently only available for.
Class 10 Class 12
Show graphically how the vapour pressure of a solvent and a solution in it of a non-volatile solute change with temperature. Show on this graph the boiling points of the solvent and the solution. Which is higher and why?

Answer:

Elevation of boiling point with addition of non-volatile solute vapour pressure decrese and hence boiling point increase.

Let Tb0 be the boiling point of pure solvent and
Tb be the boiling point of solution. The increase in
the boiling point  Tb = Tb - Tb0  is known as
elevation of boiling point.

for dilute
solutions the elevation of boiling point (ΔTb) is
directly proportional to the molal concentration of
the solute in a solution. Thus

     ΔTb ∝ m 
or
   ΔTb = Kb m

Here m (molality) is the number of moles of solute dissolved in 1 kg of solvent and the constant of proportionality, Kb is called Boiling Point Elevation Constant or Molal Elevation Constant. The unit of Kb is K kg mol-1.If w2 gram of solute of molar mass Mis dissolved in w1 gram of solvent, then molality, m of the solution is given by the expression:

m = 1000 × w2M2 ×w1putting the value of molality in Tb = Kbmwe get Tb = kb × 1000×w2M2×w1


Thus, in order to determine M2, molar mass of the solute, known mass of solute in a known mass of the solvent is taken and ΔTb is
determined experimentally for a known solvent whose Kb value is known.

297 Views

Calculate the mass of urea (NH2CONH2) required in making 2.5 kg 0.25 of molal aqueous solution.

Solution:

Molality (m) is defined as the number of moles of the solute per kilogram (kg) of the solvent and is expressed as:

= Moles of soluteMass of solvent in kg
 
Mol. mass of urea NH2CONH2
                 = 14 + 2 + 12 + 16 + 14 + 2
                 = 60 g mol-1

Molality (m) = Moles of soluteMass of solvent in kg

25 = Moles of solute2.5

or Moles of solute
                = 0.25 x 0.25 =  0.625

  Mass of urea
                   = Moles of solute x Molar mass

                   = 0.625 x 60 = 37.5 g

1475 Views

Calculate the mole fraction of benzene in solution containing 30% by mass in carbon tetrachloride.


Let the total mass of the solution be 100g and mass of benzene be 30 g
therefore mass of tetrachloride= (100-30)g = 70g
Molar mass of benzene,



897 Views

Calculate the mass percentage of benzene (C6H6) and carbon tetrachloride (CCl4) if 22 g of benzene is dissolved in 122 g of carbon tetrachloride.

Mass % of benzene
                      = mass of benzenemass of solution ×100= 2222+122×100= 22144×100 = 15.28%
Mass% of carbon tetrachloride = 100 - 15.28
                          = 84.72%
1703 Views

Calculate (a) molality (b) molarity and (c) mole fraction of KI if the density of 20% (mass/mass) aqueous KI is 1.202 g mL-1.


(a) 20% (mass/mass) means that 20 g of KI is present in 80 g of water.

Therefore, Moles of KI in solution
 



moles of KI = 20/166 =0.12mol
moles of water =80/18 =4.44mol
therefore, mole fraction of KI
 
=moles of  KImoles of KI + moles of water

=0.120.12+4.44= 0.0263            
1010 Views

Calculate the molarity of each of the following solution (a) 30 g of Co(NO3)2.6H2O in 4.3 L solution (b) 30 mL of 0.5 MH2SO4 diluted to 500 mL.

solution;

Molarity (M) is defined as number of moles of solute dissolved in one litre (or one cubic decimetre) of solution.


(a) Mol. mass of Co(NO3). 6H2O

               =58.9+(14+3×16)2+6(18)=58.9+(14+48)×2+108=58.9+124+108 = 290.9

Moles of Co(NO)3.6H2O
                                       =30290.9=0.103 mol.
Volume of solution = 4.3 L
Molarity, 
          M=Moles of soluteVolume of solution in litre    = 1034.3 = 0.024 M

(b) Number of moles present in 1000 ml of 0.5M H2SO4= 0.5 mol
therefore number of moles present in 30ml of 0.5M H2SO4=0.5×301000mol =0.015mol
therefore molarity =0.015/0.5L 

thus molarity is 0.03M

                 
  

844 Views