Zigya Logo

Chapter Chosen

Solutions

Book Chosen

Chemistry I

Subject Chosen

Chemistry

Book Store

Download books and chapters from book store.
Currently only available for.
CBSE Gujarat Board Haryana Board

Previous Year Papers

Download the PDF Question Papers Free for off line practice and view the Solutions online.
Currently only available for.
Class 10 Class 12
What is the effect of temperature on solubility of salt in water?

Answer:

Temperature does effect the solubility of any solid solute in a solution,like in the case of salt in water.the effect of temperature depends on the nature of reaction.if the reaction is an endothermic reaction,then the increase in temperature has a positive effect and the solubility increases.if it is an exothermic process,then the increase in the temperature would not favour the solubity of the solute.

For Salt + Water Solution ΔH = + ve or for endothermic dissolution of salt, the solubility increases with temperature. Where as for exothermic dissolution. Salt + Water → Solution. ΔH = – ve > the solubility decreases with temperature.

Calculate (a) molality (b) molarity and (c) mole fraction of KI if the density of 20% (mass/mass) aqueous KI is 1.202 g mL-1.


(a) 20% (mass/mass) means that 20 g of KI is present in 80 g of water.

Therefore, Moles of KI in solution
 



moles of KI = 20/166 =0.12mol
moles of water =80/18 =4.44mol
therefore, mole fraction of KI
 
=moles of  KImoles of KI + moles of water

=0.120.12+4.44= 0.0263            

Calculate the molarity of each of the following solution (a) 30 g of Co(NO3)2.6H2O in 4.3 L solution (b) 30 mL of 0.5 MH2SO4 diluted to 500 mL.

solution;

Molarity (M) is defined as number of moles of solute dissolved in one litre (or one cubic decimetre) of solution.


(a) Mol. mass of Co(NO3). 6H2O

               =58.9+(14+3×16)2+6(18)=58.9+(14+48)×2+108=58.9+124+108 = 290.9

Moles of Co(NO)3.6H2O
                                       =30290.9=0.103 mol.
Volume of solution = 4.3 L
Molarity, 
          M=Moles of soluteVolume of solution in litre    = 1034.3 = 0.024 M

(b) Number of moles present in 1000 ml of 0.5M H2SO4= 0.5 mol
therefore number of moles present in 30ml of 0.5M H2SO4=0.5×301000mol =0.015mol
therefore molarity =0.015/0.5L 

thus molarity is 0.03M

                 
  


Calculate the mass of urea (NH2CONH2) required in making 2.5 kg 0.25 of molal aqueous solution.

Solution:

Molality (m) is defined as the number of moles of the solute per kilogram (kg) of the solvent and is expressed as:

= Moles of soluteMass of solvent in kg
 
Mol. mass of urea NH2CONH2
                 = 14 + 2 + 12 + 16 + 14 + 2
                 = 60 g mol-1

Molality (m) = Moles of soluteMass of solvent in kg

25 = Moles of solute2.5

or Moles of solute
                = 0.25 x 0.25 =  0.625

  Mass of urea
                   = Moles of solute x Molar mass

                   = 0.625 x 60 = 37.5 g


Calculate the mole fraction of benzene in solution containing 30% by mass in carbon tetrachloride.


Let the total mass of the solution be 100g and mass of benzene be 30 g
therefore mass of tetrachloride= (100-30)g = 70g
Molar mass of benzene,




Calculate the mass percentage of benzene (C6H6) and carbon tetrachloride (CCl4) if 22 g of benzene is dissolved in 122 g of carbon tetrachloride.

Mass % of benzene
                      = mass of benzenemass of solution ×100= 2222+122×100= 22144×100 = 15.28%
Mass% of carbon tetrachloride = 100 - 15.28
                          = 84.72%