www.zigya.com

Previous Year Paper

Physics - 2005

Short Answer Type

1. A 900 pF capacitor is charged by a 100 V battery. How much energy is stored by the capacitor ? Answer
2. An AC voltage of 200 V is applied to the primary of a transformer and a voltage of 2000 V is obtained from the secondary. Calculate the ratio of current passing through the primary to that in the secondary coil. Answer
3. If the temperature of the cold junction of a thermocouple is lowered, what will be the effect on its neutral temperature and temperature of inversion ? Answer
4. A charge of 5 C is placed at the centre of a circle of radius 10 cm as shown in the figure below. Calculate the work done in moving a charge of $2 C$ from point A to B on the circumference of the circle. Answer
5. A 2 V battery with internal resistance of 0.1Ω is charged with a current of 5 A . Calculate the potential difference between the terminals of the battery. Answer
6. A rectangular coil of area $50 \mathrm{~cm}^{2}$ and 100 turns is placed perpendicular to a magnetic field of $10^{-2} \mathrm{~Wb} / \mathrm{m}^{2}$. If the coil is withdrawn from the field in 40 milliseconds, calculate the emf induced. Answer
7. The electric main in a house is marked $220 \mathrm{~V}-50 \mathrm{~Hz}$. Write down the equation for the instantaneous voltage. The only variable in this equation should be 't' Answer
8. An ideal inductor in an ac circuit consumes no power, though both ' V ' and ' I ' are non zero. Why ? Answer
9. State Ampere's circuital law. Answer
10. Light of wavelength $4500 \AA$ in vacuum enters into a glass block of refractive index 1.5 . What is the wavelength of light in the glass block? Answer
11. Show that S.I. unit of illuminance lux is equal to lumen $/$ meter 2. Answer
12. Light is incident on a block of glass at the polarizing angle. How does this polarising angle vary with the wavelength of light? Answer
13. Fraunhoffer diffraction from a single slit of width $1.24 \times 10^{-6} \mathrm{~m}$ is observed with light of wavelength $6200 \AA$. Calculate the angular width of the central maximum Answer
14. Refractive index of the material of a concave lens is p. The lens is immersed in a medium of refractive index $\mu_{1}\left(\mu_{1}>\mu\right)$. A parallel beam of light is incident on the lens. Draw a diagram to show the path of emergent rays. Answer

Rikenssihare. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com
16. An elecsenzod 5 a proton possess the san
nergy. Which of the two hasgoster deBroylie wavelemyth? Writedown the formula used. Answer
17. How Sthdy,Assignments, Solved Previnus Year Papers, Questions and Answers. Frae Forever. For
18. The half-life of radon is 3.8 days. Calculate the amount of radon left undecayed in a sample containing 1024 mg of radon after 38 days. Answer
19. The energy of an electron in the first Bhor orbit of an atom is -27.2 eV . What will be the energy in the third orbit? Answer
20. Explain why the electrical conductivity of a pure semiconductor increases on heating. Answer
21. An electric dipole is placed in a uniform external electric field \mathbf{E}. Show that the torque acting on $T=\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{E}}$
the dipole is given by \quad, where \mathbf{p} is the dipole moment. Answer
22. A potential difference of V volt is applied across a copper wire of length I and diameter d. How will the drift velocity be affected if
(i) V is double
(ii) I is doubled.

Answer
23. State Biot-Savart Iaw. Derive an expression for magnetic field at the centre of a circular current carrying coil of radius r. Answer
24. Distinguish between diamagnetic and paramagnetic substance in terms of its relative permeability $\left(\mu_{\mathrm{r}}\right)$ and magnetic susceptibility (x). Answer
25. A current of 4 A flows in a coil when connected to a 12 V dc source. If the same coil is connected to a $12 \mathrm{~V}, 8 \mathrm{~Hz}$ ac source, a current of 2.4 A flows in the coil. Calculate the inductance of the coil. Answer
26. In the diagram given below (figure), find the current drawn from the battery:

(i) just when the switch S is closed.
(ii) when sufficient time has elapsed after closing the switch.

Answer
27. Microwaves, X-rays, U.V. rays, infrared rays.

Which of the above electromagnetic waves has-
(i) the shortest wavelength.
(ii) the lowest frequency.

Like. Share. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com
zigya
28. Dentive Smett's law of refraction using Huygen's principle.

Answer

placed at a distance D from the slits. If the screen is moved by $5 \times 10^{-2} \mathrm{~m}$ towards the slits, the change in the fringe width is $3 \times 10^{-5} \mathrm{~m}$ If the distance between the slits is $10^{-3} \mathrm{~m}$, calculate the wavelength of the light used. Answer
30. In a single slit diffraction pattern how does the angular width of central maximum change, when
(i) the slit width is increased.
(ii) light of smaller wavelength is used.

Answer
31. Define dispersive power of the material of a prism. The refractive indices of a prism for violet, yellow and red colours are $1.632,1.620$ and 1.613 respectively. Calculate the dispersive power of the material of the prism. Answer
32. A convex lens and a plane mirror are kept at a distance of 10 cm as shown in the diagram. Parallel rays incident on the convex lens after reflection from the mirror form an image at the optical centre. Complete the ray diagram and find out the focal length of the lens. Answer
33. Explain why light waves can be polarised but sound waves cannot. Describe a method by which a plane polarised light can be distinguished from a partially polarised light. Answer
34. Sunglasses have curved surfaces, but their power is zero. Why ? Answer
35. Define magnifying power of an optical instrument. An astronomical refracting telescope consists of two lenses of focal length 75 cm and 5 cm . Calculate the magnifying power of the telescope when the final image is formed at a distance of 25 cm from the eye. Answer
36. What is Compton scattering? Mention the important conclusion drawn from the phenomenon of Compton scattering. Answer
37. The threshold wavelength of tungsten is $2400 \AA$.

When tungsten is illuminated with light of wavelength $1600 \AA$, find:
(i) Work function
(ii) Maximum kinetic energy of the emitted electron
(iii) Stopping potential.

Answer
38. In a Thomson set-up for finding e/m, the electrons are accelerated through a potential difference of 2500 V . The electrons then enter a region of crossed electric and magnetic fields of magnitudes $3.6 \times 10^{4} \mathrm{~V} / \mathrm{m}$ and $1.2 \times 10^{3} \mathrm{~T}$ respectively and pass through undeviated. Calculate the e / m of an electron. Answer
39. In a hydrogen atom a transition of electrons take place from $3^{\text {rd }}$ orbit to $2^{\text {nd }}$ orbit. Calculate the wavelength of the emitted photon. To which spectral series will this photon belong? Answer
40. Define halt-life of a radioactive substance. Establish a relationship between half-life T and decay

(mass of $1 \mathrm{H}^{2}=2.014102 \mathrm{u}$, mass of ${ }_{2} \mathrm{He}^{4}=4.002604 \mathrm{u}$).
Answer
42. What is LED ? Explain how radiations are given out by LED. Answer
43. The output of a OR gate is connected to a NOT gate as shown in the figure given below. Name the new gate formed. Draw the logic symbol and truth table of the new gate. Answer

厚 Long Answer Type

44. Two cells of same e.m.f. E, but different internal resistance r_{1} and r_{2} are connected to an external resistance R as shown in the figure. The voltmeter V reads zero. Obtain an expression for R in terms of r_{1} and r_{2}. Calculate the voltage across the cell of internal resistance r_{2}. (Assume that the voltmeter V is of infinite resistance).

Answer
45. In the figure given below, PQ is a long straight wire carrying a current of 5 A in the direction of the arrow. An electron travels with a velocity of $10^{6} \mathrm{~m} / \mathrm{s}$ at a distance 10 cm from the wire in the same direction of the current. Calculate the magnitude and direction of the force experienced by the electron.

AREws
re. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com
46. Explqic SWith2005ssary formula (no deriv two maymets by equal distance method using a deflection magnetometer imtan A position. Answetudy, Assignments, Solved Previous Year Papers. Questions and Answers. Free Forever.
47. (i) With proper labelling of the axis, draw the input and output characteristic curves of a npn transistor in common emitter configuration.
(ii) Define current gain for a transistor in common emitter configuration. Answer

Like. Share. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com

