www.zigya.com

Previous Year Paper

Physics - 2009

Study, Assignments, Solved Previous Year Papers . Questions and Answers. Free Forever.

E= Short Answer Type

1. Explain the statement 'Relative permittivity of water is 81' Answer
2. Draw (at least three) electric lines of force due to an electric dipole. Answer
3. Find the value of resistance X in the circuit below so that the junctions M and N are at the same potential: Answer
4. When the cold junction of a certain thermo-couple was maintained at $20^{\circ} \mathrm{C}$, its neutral temperature was found to be $180^{\circ} \mathrm{C}$. Find its temperature of inversion. Answer
5. State how the magnetic susceptibility of a ferromagnetic material changes when it is heated. Answer
6. What is the value of power factor in a series LCR circuit at resonance?

Answer
7. An a.c. generator generates an emf 'e' given by: $e=311 \operatorname{Sin}(100 \pi t)$ volt. Find the rms value of the emf generated by the generator. Answer
8. A ray $L M$ of monochromatic light incident normally on one refracting surface $A B$ of a regular glass prism $A B C$ emerges in air from the adjacent surface $A C$ as shown in Figure 2. Calculate the refractive index of the material of the prism. Answer
9. Describe the absorption spectrum of Sodium. Answer
10. A thin converging lens of focal length 15 cm is kept in contact with a thin diverging lens of focal length 20 cm . Find the focal length of this combination. Answer
11. Can two sodium vapour lamps.act as coherent sources? Explain in brief. Answer
12. Why all over the world, giant telescopes are of reflecting type? State any one reason. Answer
13. A ray of ordinary light is incident on a rectangular block of glass at Brewster's angle. What is the angle between the reflected ray and the refracted ray of light?
apers. Questions and Answers. Free Forever.

AIR

Answer
14. Find the momentum of a photon of energy 3.0 eV . Answer
15. The half life of a certain radio active element is 8 hours. If a pupil starts with 32 g of this element, how much of the sample will be left behind at the end of one day? Answer
16. If a hydrogen atom goes from III excited state to II excited state, what kind of radiation (visible light, ultra violet, infra red, etc.) is emitted? Answer
17. Where in our universe is the thermo-nuclear energy being released naturally? Answer
18. In which of the solids (semi-conductors, conductors or insulators) do conduction band and valence band overlap? Answer
19. What is the symbol of a NOR gate? Answer
20. Find the electric charge Q_{1} on plates of capacitor C_{1}, shown in Figure 3 below:

Answer
21. (i) What is meant by:
(1) Drift velocity and
(2) Relaxation time?
(ii) A metallic plug $A B$ is carrying a current I (see Figure 4 below). State how the drift velocity of free electrons varies, if at all, from end A to end B.

Answer
22. Figure below shows a uniform manganin wire $X Y$ of length 100 cm and resistance 9Ω, connected to an accumulator D of emf 4 V and internal resistance 1Ω through a variable resistance R. E is sa cell of emf 1.8 V connected to the wire XY via a jockey J and a central zero galvanometer G. It is found that the galvanometer shows no deflection when $X J=80 \mathrm{~cm}$. Find the value of R.

Questions and Answers. Free Forever.

Answer
23. Obtain an expression for magnetic flux density ' B ' at the center of a circular coil of radius R and having N turns, when a current I is flowing through it. Answer
24. (i) State any two differences between a moving coil galvanometer and a tangent galvanometer.
(ii) What is the use of a Cyclotron?

Answer
25. What is meant by the time constant of an LR circuit? When the current flowing through a coil P decreases from 5A to 0 in 0.2 seconds, an emf of 60 V is induced across the terminals of an adjacent coil Q. Calculate the coefficient of mutual inductance of the two coils P and Q . Answer
26. When an alternating emf $e=300 \operatorname{Sin}(100 \pi t+\pi / 6)$ Volt is applied to a circuit, the current I through it is $I=5.0 \mathrm{Sin}(100 \pi t-\pi / 6)$ ampere. Find the :
(i) Phase difference between the emf and the current.
(ii) Average power consumed by the circuit.

Answer
27. Obtain an expression for resonant frequency ' f_{0} ' of a series LCR circuit. Answer
28. In which part of the electromagnetic spectrum, do the following radiations lie:
(i) Having wavelength of 20 nm
(ii) Having frequency of 10 MHz

Answer
29. A thin convex lens which is made of glass (refractive index 1.5) has a focal length of 20 cm . It is now completely immersed in a transparent liquid having refractive index 1.75. Find the new focal length of the lens. Answer
30. Draw a labelled graph showing the variation in intensity of light with distance in a single slit Fraunhofer diffraction experiment. Answer
31. Give any two methods by which (ordinary) light can be polarised. Answer
32. A point source of monochromatic light ' S ' is kept at the centre C of the bottom of a cylinder. Radius of the circular base of the cylinder is 15.0 cm . The cylinder contains water refractive index $=4 / 3$ to a height of 7.0 cm .

Find the area of water surface through which light emerges in air.
Answer
33. An astronomical telescope consists of two convex lenses having focal length 80 cm and 4 cm . When it is in normal adjustment, what is its:
(i) Length,
(ii) Magnifying power?

Answer
34. A convex lens of focal length 5 cm is to be used as a simple microscope. Where should an object be kept so that image formed by the lens lies at least distance D of distinct vision ($D=25 \mathrm{~cm}$) ? Also calculate the magnifying power of this instrument in this set up. Answer
35. What are characteristic X rays? How are they different from continuous X rays? Give any one difference. Answer
36. Wavelength of the 1 'st line $\left(\mathrm{H}_{\alpha}\right)$ of Balmer series of hydrogen is 656.3 nm . Find the wavelength of its $2^{\text {nd }}$ line $\left(H_{\beta}\right)$. Answer
37. Plot a labelled graph of [Vs] where Vs is stopping potential of photoelectrons versus frequency ' f ' of incident radiation. How will you use this graph to determine the value of Planck's constant? Explain Answer
38. (i) Define 'unified atomic mass unit'.
(ii) Find the minimum energy which a gamma ray photon should possess so that it is capable of producing an electron - positron pair.
Answer
39. Fission of U-235 nucleus releases 200 MeV of energy. Calculate the fission rate (i.e. no. of fissions per second) in order to produce a power of 320 MW . Answer
40. Draw a neatly labelled circuit diagram of a Full Wave rectifier using two juction diodes. Answer 41. A sinusoidal voltage $e=e_{0} \operatorname{Sin}(w t)$ is fed to a common emitter amplifier. Draw neatly labelled diagrams to show:
(i) Signal voltage

Answer

春 Long Answer Type

43. With the help of a labelled diagram, obtain an expression for the electric field intensity 'E' at a point P in broad side position (i.e., equatorial plane) of an electric dipole. Answer
44. What is meant by 'Chromatic aberration'? A thin convex lens of focal length 30 cm and made of flint glass (dispersive power $=0.03$) is kept in contact with a thin concave lens of focal length 20 cm and made of crown glass. Calculate the dispersive power of crown glass if the above said combination acts as an achromatic doublet. Answer
45. Electrons, initially at rest, are passed through a potential difference of 2 kV . Calculate their:
(i) Final velocity and
(ii) de Broglie wavelength.

Answer

Like. Share. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com

