www.zigya.com

Previous Year Paper

Physics - 2010

: 三 Multiple Choice Questions

1. Electric field intensity ' E ' at a point P (Figure 1) at a perpendicular distance ' r ' from an infinitely long line charge $X^{\prime} X$ having linear charge density X is given by:

$$
\begin{aligned}
& \text { A. } E=\left(\frac{1}{4 \pi \epsilon_{0}}\right) \frac{2 \lambda}{r^{2}} \\
& E=\left(\frac{1}{4 \pi \epsilon_{0}}\right) \frac{2 \lambda}{r} \\
& \text { B. } E=\left(\frac{1}{4 \pi \epsilon_{0}}\right) \frac{\lambda}{r^{2}} \\
& \text { C. } E=\left(\frac{1}{4 \pi \epsilon_{0}}\right) \frac{\lambda}{r^{2}} \\
& \text { D. }
\end{aligned}
$$

Answer
2. A moving coil galvanometer can be converted into a voltmeter by connecting:
A. A low resistance in series with its coil.
B. A low resistance in parallel with its coil.
C. A high resistance in parallel with its coil.
D. A high resistance in parallel with its coil.

Answer
3. The loss of power in a transformer can be reduced by:
A. Increasing the number of turns in primary
B. Increasing ac voltage applied to primary.
C. Using a solid core made of steel.
D. Using a solid core made of steel.

Answer
4. Which equation represents the emission of a beta particle by a radioactive nucleus:
A. ${ }_{0}^{1} \mathrm{n} \rightarrow{ }_{1}^{1} \mathrm{H}+{ }_{-1}^{0} \mathrm{e}+\mathrm{v}$
B.

Like. Sihare. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com
$4{ }_{1}^{1} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+2{ }_{1}^{\mathrm{e}} \mathrm{e}$
W.tudy, Assignments, Solved Previous Year Papers. Questions and Answers. Free Forever.

Answet

5. An important component of Michelson's method to determine speed of light is:
A. A NICOL prism
B. A bi prism
C. A grating
D. A grating

Answer

톸№rt Answer Type

6. In an electric dipole, what is the locus of a point of zero potential? Answer
7. What is the resistance of a carbon resistor whose coloured bands are shown below in figure below:

Answer
8. A part of an electric circuit is shown below figure below:

Using Kirchhoffs $2^{\text {nd }}$ Law, find the current I flowing through the 4Ω resistor. Answer
9. Figure below shows a graph of emf'e' generated by an ac generator versus time ' t ':

Like. Share. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com

What is the frequency of the emf? Answer
10. Arrange the three types of magnetic materials, i.e., paramagnetic, diamagnetic and ferromagnetic materials, in decreasing order of their magnetic susceptibility. Answer
11. Which electromagnetic wave is longer than X-ray but shorter than light wave? Answer
12. Calculate the critical angle for glass and water pair. Answer
13. Name an optical device, which when used with a spectrometer, can determine the wavelength of the given monochromatic light. Answer
14. Young's double slit experiment was performed with monochromatic light of blue colour. The experiment was then repeated, first with light of red colour and then with light of yellow colour. Which colour produces interference pattern with maximum fringe separation (i.e., fringe width)? Answer
15. Calculate dispersive power of glass, accurately up to decimal places, from the following data: Refractive index of glass for red colour $=1.60$

Refractive index of glass for yellow colour $=1.61$
Refractive index of glass for violet colour $=1.62$
Answer
16. De Broglie wavelength of electrons of kinetic energy E is λ. What will be its value if kinetic energy of electrons is made $4 E$? Answer
17. How much energy will be created if 1 g of matter is destroyed completely? Answer
18. Complete the following nuclear reaction:
${ }_{0}^{1} \mathrm{n}+{ }_{6}^{12} \mathrm{C} \rightarrow{ }_{5}^{11} \mathrm{~B}+\ldots \ldots$
Answer
19. State one important use of a Zener diode. Answer
20. Draw a labelled graph of voltage versus time for a signal voltage used in digital circuits. Answer
21. An isolated $16 \mu \mathrm{~F}$ parallel plate air capacitor has a potential differences of 1000 V (Figure 5 a). A dielectric slab having relative permittivity (i.e. dielectric constant) $=5$ is introduced to fill the space between the two plates com pletely. (Figure 5 b). Calculate:
(i) The new capacitance of the capacitor.
(ii) The new notential differences between the two plates of the capacitor

Like. Share. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com

Answer
22. An electron revolves around the nucleus of hydrogen atom in a circular orbit of radius 5 x $10^{-11} \mathrm{~m}$. Calculate
(i) Intensity of electric field of the nucleus at the position of the electron.
(ii) Electrostatic potential energy of the hydrogen nucleus and electron system.

Answer
23. (i) What is Peltier effect? State one difference between Peltier effect and Seebeck effect,
(ii) Explain the statement: temperature coefficient of resistance of a metal is $4 \times 10^{-3} /{ }^{\circ} \mathrm{C}$. Answer
24. In the circuit shown below, PQ is a uniform metallic wire of length 4 m and resistance 20Ω. Battery B has an emf of 10 V and internal resistance of 1Ω. J is a jockey or slide contact. Resistance of the ammeter and connecting wires is negligible.

(i) When the jockey J does not touch the wire PQ , what is the reading of ammeter A ?
(ii) Where should the jockey J be pressed on the wire PQ so that the galvanometer G shows no deflection?

Answer
25. What is 'current density'? Write the vector equation connecting current density J with electric field intensity E, for an ohmic conductor. Answer
26. A small magnetic need $\overrightarrow{\mathrm{B}}_{F}$ and \vec{B}_{H} perpendicular magnetic fields as shown below:

Papers. Questions and Answers. Free Forever.
(i) What is the effect of each of the magnetic fields $\stackrel{\rightharpoonup}{\mathrm{B}}_{F}$ and \vec{B}_{H} on the needle?
(ii) When the needle is in equilibrium, obtain an expression for an angle θ made by the needle with $\overrightarrow{\mathrm{B}}_{F}$ in terms $\overrightarrow{\mathrm{B}}_{F}$ and \vec{B}_{H} of only. Answer
27. Figure 8 below shows two very long conductors $P Q$ and $R S$ kept parallel to each other in vacuum at a distance of 20 cm they carry currents of 5 A and 15 A , respectively, in the same direction, as $\overrightarrow{\mathrm{B}}_{R}$ shown. Find the resultant magnetic flux density at a point M which lies exactly midway between $P Q$ and $R S$.

Answer
28. With the help of a neatly drawn labeled diagram, prove that the magnitude of motional emf'e' is given by e $=B / v$, where ' l ' is the length of a metallic rod and ' u ' s the velocity with which it is pulled in a transverse magnetic field ' B '. Answer
29. Plot a labeled graph showing variation in impedance Z of a series LCR circuit with frequency fof alternating emf applied to it. What is the minimum value of this impedance? Answer
30. On the basis of Huygen's wave theory, show that light is incident on a plane mirror obliquely; angle of reflection is equal to angle of incidence. Answer
31. (i) What is a continuous emission spectrum? Name one source of light which produces such a spectrum.
(ii) Explain in brief why dark lines are observed in the solar spectrum.

Answer
32. An equiconvex lens of glass, having focal length of 10 cm is split into two identical Plano convex
lenses each having focal length fj as shown below.
Like. Share. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com

Answer
33. An illuminated point object O is kept 20 cm from a thin convex lens L_{1} of focal length 15 cm as shown below. A thin diverging lens L_{2} of focal length 25 cm is kept co-axial with the first lens and 35 cm from it, as shown in Figure 10. Find the position of the final image formed by this combination of lenses.

34. (i) What are coherent sources?
(ii) In young's double slit experiment, what is the path differences between the two light waves
forming $5^{\text {th }}$ bright band (fringe) on the screen?
Answer
35. State one similarity and one difference between interference of light and diffraction of light.

Answer
36. A ray EF of monochromatic light is incident on the refracting surface $A B$ of a regular glass prism (refractive index $=1.5$) at an angle of incidence of $\mathrm{i}=55^{\circ}$ (Figure 11). If it emerges through the adjacent face AC, calculate the right angle of emergence 'e'.

Figure 11
Answer
37. (i) In case of polarized light, what is means by the plane of polarization?
(ii) Find refractive index of glass if its polarising angle is 60°.

Answer
38. (i)Explain the statement: "Angular magnification of a compound microscope in normal use is 30".

Like. Share. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com
(ii) Sreeswozothe resolving power of an
telescope \qquad
an be increased010

2355 V is applied between them, an oil drop of radius $1 \mu \mathrm{~m}$ is found to remain suspended.
Calculate the number of excess electrons on the drop,
[Density of oil $=900 \mathrm{~kg} / \mathrm{m}^{3}=$ Density of air may be ignored]
Answer
40. Figure 12 below shows a simple X ray tube. P_{1} and P_{2} are power supplies which generate 6 V and $40,000 \mathrm{~V}$ respectively. Show how you will connect these power supplies to the X ray tube so that it starts producing X rays.

Answer
41. (i) Write a balanced equation showing nuclear fission of Uranium ${ }_{92}^{235} \mathrm{U}$ nucleus.
(ii) In a nuclear reactor, what is the function of:
(1) Cadmium rods? (2) Graphite rods?

Answer
42. Starting with $N=N_{0} e^{-\lambda t}$, obtain a relation between disintegration constant ' λ ' of a radioactive element and its half life (T), various terms have their usual meaning. Answer
43. On an energy level diagram of hydrogen, show by a downward or an upward arrow, a transition which results in:
(i) Emission line of Balmer series.
(ii) Emission line of Lyman series.
(iii) Absorption line of Lyman series.

Answer
44. Calculate:
i) Mass defect of helium ${ }_{2}^{4} \mathrm{He}$ nucleus and
ii)

Its binding energy in MeV.
Mass of a proton $=1.007276$ u
Mass of a neutron $=1.008665 \mathrm{u}$

Like. Share. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com

Answer $\begin{gathered}\text { Study, Assignments, Solved Previous Year Papers. Questions and Answers. Free Forever. }\end{gathered}$
45. Draw a labelled diaaram of a common emitter amplifier. What is the phase angle between the input and output voltages? Answer
46. Threshold wavelength of a certain metal is 792 nm . What is the maximum kinetic energy of photo-electrons emitted by this metal if it is exposed to ultraviolet light of wavelength 396 nm ?

Answer
47. The following combination of gates acts as a logic gate. With the help of a truth table, find out which logic gate the combination represents:

Answer

