www.zigya.com

Previous Year Paper

Physics - 2015

: 三 Multiple Choice Questions

1. A short electric dipole (consists of two point charges $+q$ and $-q$) is placed at the centre 0 and inside a large cube (ABCDEFGH) of length L, as shown in the figure below. The electric flux, remaining through the cube is:

B. Zero
C. $\frac{q}{2 \pi \epsilon_{0} L}$
D. $\frac{q}{2 \pi \epsilon_{0} L}$

Answer
2. The equivalent resistance between points a and f of the network as shown in the figure below is:

A. 24 ohm
B. 110 ohm
C. 140 ohm
D. 140 ohm

Answer
3. A moving electron enters a uniform and perpendicular magnetic field. Inside the magnetic field, the electrons travels along,
A. a straight line
B. a parabola

A. 3 cm
B. 9 cm
C. 12 cm
D. 12 cm

Answer
5. If E_{p} and E_{k} represent potential energy and kinetic energy respectively, of an orbital electron, then according to the Bohr's theory:
A. $E_{k}=-E_{p} / 2$
B. $E_{k}=-E_{p}$
C. $E_{k}=-2 E_{p}$
D. $E_{k}=-2 E_{p}$

Answer

EShort Answer Type

6. What is meant by the term Quantization of Charge?

Answer
7. A resistor R is connected to a cell of emf e and internal resistance r. Potential difference across the resistor R is found to be V. State the relation between e, V, R and r. Answer
8. Three identical cells of emf 2 V internal resistance 1 ohm are connected in series to form a battery. The battery is then connected to a parallel combination of two identical resistors, each of resistance 6 ohm. Find the current delivered by the battery.

Answer
9. State how magnetic susceptibility is different for the three types of magnetic material, i.e., diamagnetic, paramagnetic and ferromagnetic materials.

Answer
10. An emf of 2 V is induced in a coil when current in it is changed from 0 A to 10 A in 0.40 sec . Find the coefficient of self-inductance of the coil.

Answer
11. How are electric vector \mathbf{E}, magnetic vector \mathbf{B} and velocity vector \mathbf{c} oriented in an
electromagnetic wave?
Answer
12. State two methods by which ordinary light can be polarised?

Physics 	Zgya minimum devia	Fion	$\begin{gathered} \text { Exam Year } \\ 2015 \end{gathered}$

Answer
15. State any one advantage of using a reflecting telescope in place of a refracting telescope?

Answer
16. State Moseley's Law?

Answer
17. Wavelengths of the first lines of the Lyman series, Paschen series and Balmer series in hydrogen spectrum are denoted by ${ }^{\lambda_{L}, \lambda_{P} \text { and } \lambda_{B}}$ respectively. Arrange these wavelengths in increasing order.

Answer
18. What is the significance of binding energy per nucleon of a nucleus of a radioactive element? Answer
19. Write any one balanced equation representing nuclear fission.

Answer
20. What is the difference between analogue signal and digital signal?

Answer
21. Two point charges of 10 C each are kept at a distance of 3 m in vacuum. Calculate their electrostatic potential energy.

Answer
22. Four capacitors $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$ and C_{4} are connected as shown in the figure below. Calculate equivalent capacitance of the circuits between points X and Y.

Answer
23. Draw a labelled graphs to show how electrical resistance varies with temperature for:
i) a metallic wire
ii) a piece of carbon

Answer
24. Two resistors $R_{1}=400$ ohm and $R_{2}=20$ ohm are connected in parallel to a battery. If heating power developed in R_{1} is 25 W , find the heating power developed in R_{2}.

Like. Share. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com

Study, Assignments, Solved Previous Year Papers . Questions and Answers. Free Forever. $\frac{R_{1}}{R_{2}}=\frac{R_{3}}{R_{4}}$
have their usual meanings.
Answer
26. A 10 m long uniform metallic wire having a resistance 20 ohm is used as a potentiometer wire. This wire is connected in series with another resistance of 480 ohm and a battery of emf 5 V having negligible internal resistance.If an unknown emfe is balanced across 6 m of the potentiometer wire, calculate:
i) the potential gradient across the potentiometer wire.
ii) the value of the unknown emf e.

Answer
27. i) Explain the term hysteresis.
ii) Name the three elements of the earth's magnetic field which help in defining earth's magnetic field completely.

Answer
28. Obtain an expression for magnetic flux density B at the centre of a circular coil of radius R, having N turns and carrying a current I .

Answer
29. A coil of self inuctance 2.5 H and resistance 20 ohm is connected to a battery of emf 120 V having internal resistance of 5 ohm. Find:
i) the time constant of the circuit
ii) the current in the circuit in steady state.

Answer
30. In a series LCR circuit, what is the difference between V_{L} and V_{C} where V_{L} is the potential difference across the inductor and V_{C} is the potential difference across the capacitor.

Answer
31. State any two difference between interference of light and diffraction of light.

Answer
32. Laser light of wavelength 630 nm is incident on a pair of slits which are separated by 1.8 mm . If the screen is kept 80 cm away from the two slits, calculate:
i) fringe separation i.e., fringe width

Physics

34. A point object O is placed at a distance of 15 cm from a convex lens L of focal length 10 cm as shown in figure below. On the other side of the lens, a convex mirror M is placed such that its distance from the lens is equal to the focal length of the lens. The final image formed by this combination is observed to coincide with the object 0 . Find the focal length of the convex mirror.

Answer
35. What is chromatic aberration? How can it be minimised or eliminated?

Answer
36. Draw a labelled ray diagram of an image formed by compound microscope, when the final image lies at the least distance of distinct vision (D).

Answer
37. With regard to an astronomical telescope of refracting type, state how you will increase it's:
i) magnifying power
ii) resolving power

Answer
38. In an experiment of photoelectric effect, the graph of maximum kinetic energy E_{k} of the emitted photoelectrons versus the frequency ${ }^{v}$ of the incident light is a straight line $A B$ as shown in the figure below.

Find:
i) Threshold frequency of the metal

39.
(p).
ii) State any one phenomenon in which the moving particles exhibit wave nature.

Answer
40. On the basis of Bohr's theory, derive an expression for the radius of the $\mathrm{n}^{\text {th }}$ orbit of an electron of hydrogen atom.

Answer
41. Find the minimum wavelength of the emitted X-rays, when an X-ray tube is operated at 50 kV . Answer
42. i) Define half-life of a radioactive substance.
ii) Using the equation, $N=N_{o} e^{\lambda_{t}}$, obtain the relation between half-life (T) and decay constant (of a radioactive substance.

Answer
43. With the help of a suitable example and an equation, explain the term pair production. Answer
44. Draw a labelled diagram of a full wave rectifier. Show how output voltage varies with time, if input voltage is a sinusoidal voltage.

Answer
45. What is a NAND gate? Write it's truth table?

Answer

兰 Long Answer Type

46. Derive an expression for intensity of electric field at a point in broadside position or on an equatorial line of an electric dipole.

Answer
47. Figure below shows a capacitor C, an inductor L and resistor R, connected in series to an ac supply of 220 V .

Gikeculataie. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com

Physics	
i) thecesenantifequency of the given LC ZIPYo	Exam Year 2015

ii) curtudxt, Afswiopnmentry Solved Pifevipus Year Papers . Questions and Answers. Free Forever.
iii) Average power consumed by the circuit.

Answer
48. On the basis of Huygen's wave theory of light, show that the angle of reflection is equal to the angle of incidence. You must draw a labelled diagram for this deviation.

Answer

