www.zigya.com

Previous Year Paper

Physics - 2002

¿三 Multiple Choice Questions

1. A very large number of balls are thrown vertically upwards in quick successions in such a way that the next ball is thrown when the previous one is at the maximum height. If the maximum height is 5 m , the number of balls thrown per minute is (take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$)
A. 80
B. 120
C. 40
D. 60

Answer
2. The resultant of two forces, one double the other in magnitude, is perpendicular to the smaller of the two forces. The angle between the two forces is
A. 120°
B. 60°
C. 90°
D. 150°

Answer
3. A projectile is moving at $20 \mathrm{~ms}^{-1}$ at its highest point, where it breaks into equal parts due to an internal explosion. One part moves vertically up at $30 \mathrm{~ms}^{-1}$ with respect to the ground. Then the other part will move at
A. $20 \mathrm{~ms}^{-1}$
B. $1031 \mathrm{~ms}-1$
C. $50 \mathrm{~ms}^{-1}$
D. $30 \mathrm{~ms}^{-1}$

Answer
4. A body is projected vertically upwards from the surface of a planet of radius R with a velocity equal to half the escape velocity for that planet. The maximum height attained by the body is
A. $R / 2$
B. $R / 3$
C. $R / 5$
D. $R / 4$

Answer
5. From the top of a tower a stone is thrown up which reaches the ground in a time t_{1}. A second Like. Share. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com
B. $\mathrm{t} 32=\mathrm{t} 12-\mathrm{t} 22$
C. $\mathrm{t} 3=\mathrm{t} 1+\mathrm{t} 22$
D. $\mathrm{t} 3=\mathrm{t} 1 \mathrm{t} 2$

Answer
6. The energy spectrum of a black body exhibits a maximum around a wavelength λ_{0}. The temperature of the black body is now changed such that the energy is maximum around a wavelength $3 \lambda 04$. The power radiated by the black body will now increase by a factor of
A. $64 / 27$
B. $256 / 81$
C. $4 / 3$
D. $16 / 9$

Answer
7. n identical bulbs, each designated to draw a power P from a certain voltage supply. The total power which they will draw is
A. Pn
B. Pn 2
C. nP
D. P

Answer
8. A racing car moving towards a cliff, sounds its horn. The driver observes that the sound reflected from the cliff has a pitch one octave higher than the actual sound of the horn. If v is the velocity of sound, then the velocity of the car is
A. $\mathrm{v} / 2$
B. $\mathrm{v} / 2$
C. $\mathrm{v} / 4$
D. $v / 3$

Answer
9. A railway engine whistling at a constant frequency moves with a constant speed. It goes past a stationary observer beside the railway track. Which of the following graphs best represent the variation of frequency of the sound n heard by the observer with the time t ?

Like. Share. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com

C.
D.

Answer
10. The tension of a stretched string is increased by 69%. In order to keep its frequency of vibration constant, its length must be increased by
A. 30%
B. 20%
C. 69%
D. 69%

Answer
11. Under the same conditions of temperature and presssure, the velocity of sound in oxygen and hydrogen are v_{0} and v_{H}. Then
A. $\mathrm{V}_{\mathrm{o}}=4 \mathrm{v}_{\mathrm{H}}$
B. $\mathrm{v}_{\mathrm{H}}=4 \mathrm{v}_{\mathrm{o}}$
C. $\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{H}}$
D. $\mathrm{v}_{\mathrm{H}}=16 \mathrm{v}$ 。

Answer
12. The load versus elongation graph for four wires of the same materials is shown in the figure. The thinnest wire is represented by the line

A. OC
B. $O D$
C. OA
D. OB

Answer
13. One kilogram of ice at $0^{\circ} \mathrm{C}$ is mixed with one kilogram of water at $80^{\circ} \mathrm{C}$. The final temperature of the mixture is (take : specific heat of water $=4200 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$, latent heat of ice $=336 \mathrm{~kJ} \mathrm{~kg}^{-1}$).
A. $40^{\circ} \mathrm{C}$
B. $60^{\circ} \mathrm{C}$
C. $0^{\circ} \mathrm{C}$
D. $50^{\circ} \mathrm{C}$

Answer
14. A Carnot's engine is made to work between $200^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$ first and then between $0^{\circ} \mathrm{C}$ and $200^{\circ} \mathrm{C}$. The ratio of efficiencies of the engine in the two cases is
A. $1: 1.73$
B. 1.73: 1
C. $1: 2$
D. $1: 1$

Answer
15. Forty one tuning forks are arranged in increasing order of frequencies such that every fork gives 5 beats with the next. The last fork has a frequency that is double the frequency of the first fork is
A. 210
B. 400
C. 205
D. 200

Answer
16. In a stationary wave all the particles
A. in the region between two nodes vibrate in same phase
B. on either side of a node vibrate in same phase
the air column now is
A. f_{0}
B. 3 f 04
C. $2 \mathrm{f}_{0}$
D. f 02

Answer
18. A man x can hear upto 10 kHz and another man y upto 2 kHz . A note of frequency 500 Hz is produced before them from a stretched string then both will hear sounds of
A. different pitch but same quality
B. same pitch but different quality
C. same pitch and same quality
D. different pitch and different quality

Answer
19. The equation $y=A \cos 22 \pi n t-2 \pi x y$ represents a wave with
A. amplitude $A / 2$, frequency $2 n$ and wavelength λ
B. amplitude $A / 2$, frequency $2 n$ and wavelength $\lambda 2$
C. amplitude A, frequency n and wavelength λ
D. amplitude A, frequency $2 n$, wavelength 2λ

Answer
20. A light points fixed to one prong of a tuning fork touches a vertical plate. The fork is set vibrating and the plate is allowed to fall freely. If eight oscillations are counted when the plate falls through 10 cm , the frequency of the tuning fork is
A. 280 Hz
B. 360 Hz
C. 56 Hz
D. 560 Hz

Answer

21. Five rods of same dimensions are arranged as shown in the figure. They have thermal conductivities $k_{1}, k_{2}, k_{3}, k_{4}$ and k_{5} when points A and B are maintained at different temperatures. No heat flows through the central rod if

A. $\mathrm{k}_{1} \mathrm{k}_{4}=\mathrm{k}_{2} \mathrm{k}_{3}$
B. $k_{1}=k_{4}$ and $k_{2}=k_{3}$
C. $\mathrm{k} 1 \mathrm{k} 4=\mathrm{k} 2 \mathrm{k} 3$
D. $\mathrm{k}_{1} \mathrm{k}_{2}=\mathrm{k}_{3} \mathrm{k}_{4}$

Answer
22. Out of the following statements which is not true ?
A. Infrared radiations arise due to minor electron transitions in atoms
B. Infrared radiations are used for long distance photography
C. Sun is the natural source of infrared radiation
D. Infrared radiations are detected by using a bolometer

Answer
23. 64 small drops of mercury, each of radius r and charge q coalesce to form a big drop. The ratio of the surface density of charge of each small drop with of the big drop is
A. $64: 1$
B. $1: 64$
C. $1: 4$
D. $4: 1$

Answer
24. Two capacitors of capacitances $3 \mu \mathrm{~F}$ and $6 \mu \mathrm{~F}$ are charged to a potential of 12 V each. They are now connected to each other, with the positive plate to each joined to the negative plate to the other. The potential difference across each will be
A. 4 V
B. 6 V
C. zero
D. 3 V

Answer
25. The resistance of an incandescent lamp is
A. smaller when switched on
B. greater when switched off
C. the same whether it is switch off or switch on
D. greater when switched on

Like. Share. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com

Physics AnswgEE 2002 26. A superturructor extitits perfect\quad ZIgya	Exam Year 2002

Studeqrotssignments, Solved Previous Year Papers. Questions and Answers. Free Forever.
B. ferrimagnetism
C. diamagnetism
D. paramagnetism

Answer
27. A magnet is dropped down an infinitely long vertical copper tube. Then
A. the magnet moves with continuously decreasing velocity and ultimately comes to rest.
B. the magnet moves with continuosly increasing velocity and ultimately acquires a constant terminal velocity.
C. the magnet moves with continuously increasing velocity and acceleration.
D. the magnet moves with continuosly increasing velocity but constant acceleration. Answer
28. An ammeter and a voltmeter are joined in series to a cell. Their readings are A and V respectively. If a resistance is now joined in parallel with the voltmeter, then
A. A will decrease, V will increase
B. A will increase, V will decrease
C. both A and V will increase
D. both A and V will decrease

Answer
29. If each of the resistance of the network shown in figure is R, the equivalent resistance between A and B is

A. 3 R
B. $5 R$
C. R2
D. R

Answer
30. A cell supplies a current of 0.9 A through a 2Ω resistor and a current of 0.3 A through a 7Ω resistor. The internal resistance of the cell is
A. 1.2Ω

Like. ${ }^{B}$ Shari 0Ω
Like. Shàre. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com

Answfeldy, Assignments, Solved Previous Year Papers . Questions and Answers. Free Forever.
31. A wire carrying currenti is shaped as shown. Section AB is a quarter circle of radius r. The magnetic field is directed

A. perpendicular to the plane of the paper and directed into the paper
B. at an angle $\pi 4$ to the plane of the paper
C. along the bisector of the angle $A C B$ away from $A B$
D. along the bisector of $A C B$ towards $A B$

Answer
32. The wire loop formed by joining two semicircular sections of radii R_{1} and R_{2} and centre C, carries a current I as shown. The magnetic field at C has a magnitude

A. $\mu 012$ 1R1-1R2
B. $\mu 014$ 1R1-1R2
C. $\mu 012$ 1R1 + 1R2
D. $\mu 0 \mid 41 R 1+1 R 2$

Answer
33. When 100 V DC is applied across a coil, a current of 1 A flows through it. When 100 V AC of50 Hz is applied to the same coil only 0.5 A flows. The inductance of the coil is
A. 5.5 mH
B. 0.55 mH
C. 55 mH
D. 0.55 H

Answer
34. In the circuit shown in the figure, the $A C$ source gives a voltage $V=20 \cos$ (2000t). Neglecting

A. $1.68 \mathrm{~V}, 0.47 \mathrm{~A}$
B. $0 \mathrm{~V}, 1.47 \mathrm{~A}$
C. $5.6 \mathrm{~V}, 1.4 \mathrm{~A}$
D. $0 \mathrm{~V}, 1.4 \mathrm{~A}$

Answer
35. Three point charges are placed at the corners of an equilateral triangle. Assuming only electrostatic forces are acting. Then the system
A. will be in equilibrium if the charges rotate about the centre of the triangle
B. can never be in equilibrium
C. will be in equilibrium if the charges have the same magnitudes but different sign
D. will be in equilibrium if the charges have different magnitude and different signs. Answer
36. Two copper balls, each weighing 10 g are kept in air 10 cm apart. If one electron from every 10^{6} atoms is transferred from one ball to the other, the Coulomb force between them is (atomic weight of copperis 63.5)
A. $2.0 \times 10^{4} \mathrm{~N}$
B. $2.0 \times 10^{10} \mathrm{~N}$
C. $2.0 \times 10^{6} \mathrm{~N}$
D. $2.0 \times 10^{6} \mathrm{~N}$

Answer
37. What fraction of the energy drawn from the charging battery is stored in a capacitor ?
A. 75%
B. 100 \%
C. 25%
D. 50%

Answer
38. A and B are two conductors carrying a current I in the same direction. x and y are two electron beams moving in the same direction. Then there will be

Like. Share. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com
B. Tevulsiom between A and B, attraction between x and y

Exam Year
2002

Studyrassignmentse Solved Provious Yearf Papers . Questions and Answers. Free Forever.
D. repulsion between A and B and x and y

Answer
39. The current-voltage graph for a given metallic conductor at two different temperature T_{1} and T_{2} are as shown in the figure. Then

A. $\mathrm{T}_{1}<\mathrm{T}_{2}$
B. nothing can be said about T_{1} and T_{2}
C. $T_{1}=T_{2}$
D. $T_{1}>T_{2}$

Answer
40. The current-voltage graph for a given metallic conductor at two different temperature T_{1} and T_{2} are as shown in the figure. Then

A. $\mathrm{T}_{1}<\mathrm{T}_{2}$
B. nothing can be said about T_{1} and T_{2}
C. $\mathrm{T}_{1}=\mathrm{T}_{2}$
D. $T_{1}>T_{2}$

Answer
41. The variation of the intensity of magnetisation (I) with respect to the magnetising field (H) in a diamagnetic substance is described by the graph

Study, As sinimeitis, Solved Previous Year Papers. Questions and Answers. Free Forever.

A. OC
B. OD
C. OA
D. $O B$

Answer
42. An aluminium ring B faces an electromagnet A. The current I through A can be altered. Then which of the following statements is correct ?

A. If I decreases, A will repel B
B. Whether I increases or decreases, B will not experience any force
C. If I increases, A will repel B
D. If I increases, A will attract B

Answer
43. A ray of light travels from an optically denser to a rarer medium. The critical angle for the two media is C. The maximum possible deviation of the ray will be
A. 2 C
B. $\pi 2-C$
C. $\pi-C$
D. $\pi-2 C$

Answer
44. When one of the slits of Young's experiment is covered with a transparent sheet of thickness $4 \cdot 8$ mm , the central shifts to a position originally occupies by the 30th bright fringe. What should be the thickness of the sheet if the central fringe has to shift to the position occupied by 20th bright fringe ?
A. 1.6 mm
B. 3.8 mm
C. 3.2 mm
D. 7.6 mm
hikewshare. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com
45. Light peesseonccessively through two
$0.02 \mathrm{rad} \mathrm{m} \mathrm{kg}^{-1}$. The net rotation produced is
A. 0°
B. 15°
C. 10°
D. 20°

Answer

46. V_{0} and V_{E} represent the velocities, , and μ_{E} the refractive indices of ordinary and extraordinary rays for a double refracting crystal. Then
A. $\mathrm{v}_{0} \leq \mathrm{v}_{\mathrm{E}}, \mu_{0} \leq \mu_{\mathrm{E}}$, if the crystal is quartz
B. $\mathrm{V}_{0} \geq \mathrm{v}_{\mathrm{E}}, \mu_{0} \leq \mu_{\mathrm{E}}$, if the crystal is calcite
C. $\mathrm{v}_{0} \geq \mathrm{v}_{\mathrm{E}}, \mu_{0} \geq \mu_{\mathrm{E}}$, if the crystal is quartz
D. $v_{0} \leq v_{E}, \mu_{0} \geq \mu_{E}$, if the crystal is calcite.

Answer
47. The de-Broglie wavelength of an electron in the first Bohr orbit is
A. equal to half the circumference of the first orbit
B. equal to one fourth the circumference of the first orbit
C. equal to the circumference of the first orbit
D. equal to twice the circumference of the first orbit Answer
48. In nuclear fission the percentage of mass converted into energy is about
A. 0.01%
B. 10%
C. 1%
D. 0.1%

Answer
49. If I_{1}, I_{2}, I_{3} are the lengths of the emitter, base and collector of a transistor, then
A. $I_{3}<I_{2}<I_{1}$
B. $I_{1}=I_{2}=I_{3}$
C. $I_{3}<I_{1}<I_{2}$
D. $I_{2}<I_{1}<I_{3}$

Answer
50. When the conductivity of a semiconductor is only due to breaking of covalent bonds, the semiconductor is called

Answetudy, Assignments, Solved Previous Year Papers. Questions and Answers. Free Forever.
51. The light reflected by a plane mirrormay form a real image
A. if the rays incident on the mirror are converging
B. if the rays incident on the mirror are diverging
C. under no circumstances
D. if the object is placed very close to the mirror

Answer
52. A convex is made up of three different materials as shown in the figure. For a point object places on its axis, the number of images formed are

A. 5
B. 1
C. 3
D. 4

Answer
53. Light appears to travel in straight lines because
A. light consists of very small particles
B. the frequency of light is very small
C. the velocity of light is different for different colours
D. the wavelength of light is very small

Answer
54. In Young's double slit experiment, the central bright fringe can be identified
A. as it is narrower than other bright fringes
B. by using white light instead of monochromatic light
C. as it has a greater intensity than other bright fringes
D. as it is wider than other bright fringes

Answer
55. An object is placed 12 cm to the left of a converging lens of focal length 8 cm . Another converging lens of 6 cm focal length is placed at a distance of 30 cm to the right of the first lens.

StudłeAssiqnnents: Solyed Previous Year Papers . Questions and Answers. Free Forever.
Answer
56. Whenever a hydrogen atom emits a photon in the Balmer series, it
A. may emit another photon in the Paschen series
B. need not emit any more photon
C. may emit another photon in the Balmer series
D. must emit another photon in the Lyman series Answer
57. The SI unit of radioactivity is
A. Rutherford
B. Roentgen
C. Becqueral
D. Curie

Answer
58. To increase both the resolving power and magnifying power of a telescope
A. the focal length of the objective has to be increased
B. both the focal length and aperture of the objective has to be increased
C. the wavelength of light has to be decreased
D. the aperture of the objective has to be increased

Answer
59. In the Bohr model of the hydrogen atom, let R, V and E represent the radius of the orbit, the speed of electron and the total energy of the electron respectively. Which of the following quantity is proportional to the quantum number n ?
A. EV
B. $R E$
C. VR
D. $R E$

Answer
60. In a sample of radioactive material, what percentage of the initial number of active nuclei will decay during one mean life ?
A. 63%
B. 69.3%
C. 37%
D. 50%

Answer
61. A caesium photocell, with a steady potential difference of 60 V across it, is illuminated by a brignt point source of light 50 cm away. When the same light is placed 1 cm away, the bilkoténaret.rBagk

Exam Year
2002

Studychessipnments quolved Previgus Yearfouppers.rguestions and Answers. Free Forever.

[^0]Answer

[^0]: D. each carry one quarter of their

