www.zigya.com

Previous Year Paper

Physics - 2003

: 三 Multiple Choice Questions

1. If the velocity of light c, gravitational constant G and Planck's constant h are chosen as fundamental units, the dimensions of length L in the new system is
A. $\left[h^{1} c^{1} G^{-1}\right]$
B. $\left[h^{1 / 2} c^{1 / 2} G^{-1 / 2}\right]$
C. $\left[h^{1} c^{-3} G^{1}\right]$
D. $\left[h^{1 / 2} c^{-3 / 2} G^{1 / 2}\right]$

Answer
2. A plate has a length $5 \pm 0.1 \mathrm{~cm}$ and breadth $2 \pm 0.01 \mathrm{~cm}$. Then the area of the plate is
A. $10 \pm 0.1 \mathrm{~cm}^{2}$
B. $10 \pm 0.01 \mathrm{~cm}^{2}$
C. $10 \pm 0.001 \mathrm{~cm}^{2}$
D. $10 \pm 1 \mathrm{~cm}^{2}$

Answer

3. A ball hangs from a string inside a train moving along a horizontal straight track. The string is observed to incline towards the rear of the train making a constant small angle with the vertical. It shows that the train is
A. moving with a uniform acceleration
B. moving with a uniform velocity
C. moving with a uniform retardation
D. moving with an acceleration which is increasing uniformly

Answer
4. A particle moves along Y-axis in such a way that its y-coordinate varies with time t according to the relation $y=3+5 t^{2}+7 t^{2}$. The initial velocity and acceleration of the particle are respectively
A. $14 \mathrm{~ms}^{-1},-5 \mathrm{~ms}^{-2}$
B. $19 \mathrm{~ms}^{-1},-9 \mathrm{~ms}^{-2}$
C. $5 \mathrm{~ms}^{-1}, 14 \mathrm{~ms}^{-2}$
D. $3 \mathrm{~ms}^{-1},-5 \mathrm{~ms}^{-2}$

Answer
5. An object travels north with a velocity of $10 \mathrm{~ms}^{-1}$ and then speeds up to a velocity of $25 \mathrm{~ms}^{-1}$ in 5 Like. Share. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com

Exam Year
2003
A. $3 \mathrm{~ms}^{-1}$ in north direction

Study, Assignments, Solved Previous Year Papers. Questions and Answers. Free Forever.
C. $15 \mathrm{~ms}^{-2}$ in north direction
D. $3 \mathrm{~ms}^{-2}$ in south direction

Answer
6. An automobile in travelling at $50 \mathrm{~km} / \mathrm{h}$, can be stopped at a distance of 40 m by applying brakes. If the same automobile is travelling at $90 \mathrm{~km} / \mathrm{h}$, all other conditions remaining same and assuming no skidding, the minimum stopping distance in metres is
A. 72
B. 92.5
C. 102.6
D. 129.6

Answer

7. A rifle shoots a bullet with a muzzle velocity of $500 \mathrm{~ms}^{-1}$ at a small target 50 m away. To hit the target the rifle must be aimed (take $\mathrm{g}=10 \mathrm{~ms}^{-2}$)
A. exactly at the target
B. 10 cm below the target
C. 5 cm above the target
D. 5 cm below the target

Answer
8. The centripetal acceleration of particle of mass m moving with a velocity v in a circular orbit of radius r is
A. v^{2} / r along the radius, towards the centre
B. v^{2} / r along the radius, away from the centre
C. $m v^{2} / r$ along the radius, away from the centre
D. $m v^{2} / r$ along the radius, towards the centre

Answer
9. An α-particle of mass m suffers one dimensional elastic collision with a nucleus of unknown mass. After the collision the α-particle is scattered directly backwards losing 75% of its kinetic energy. Then the mass of the nucleus is
A. m
B. 2 m
C. 3 m
D. 32 m
10. While driving a car argund a curye of 200 madius. the driver potices that a simple pendulum
C. 82.5
D. 92.5

Answer
11. A stationary body of mass m explodes into three parts having masses in the ratio $1: 3: 3$. The two fractions with equal masses move at right angles to each other with a velocity of 1.5 ms^{-1}. Then the velocity of the third body is
A. $4.52 \mathrm{~ms}-1$
B. $5 \mathrm{~ms}^{-1}$
C. $532 \mathrm{~ms}-1$
D. $1.5 \mathrm{~ms}^{-1}$

Answer
12. A rocket of initial mass 1000 kg ejects mass at a constant rate of $10 \mathrm{~kg} / \mathrm{s}$ with constant relative speed of $11 \mathrm{~ms}^{-1}$. Neglecting gravity, the acceleration of the rocket 1 min after the blast is
A. $11 / 40 \mathrm{~ms}^{-2}$
B. $22 / 40 \mathrm{~ms}^{-2}$
C. $1.1 / 40 \mathrm{~ms}^{-2}$
D. $1 \mathrm{~ms}^{-2}$

Answer
13. An elastic ball is dropped from a height h and it rebounds many times from the floor. If the coefficient of restitution is e, the time interval between the second and the third impact, is
A. ev / g
B. $e^{2} v / g$
C. e28hg
D. e2 hg Answer
14. An object of mass m is attached to light string which passess through a hollow tube. The object is set into rotation in a horizontal circle of radius, r_{1}. If the string is pulled shortening the radius to r_{2}, the ratio of new kinetic energy to the original kinetic energy is
A. r 2 r 12
B. r1r22
C. r 1 r 2
D. r 2 r 1
A.tudy ${ }^{2}$ Assignments, Solved Previous Year Papers . Questions and Answers. Free Forever.
B. maximum
C. minimum
D. unity

Answer
16. A car is racing on a circular track of 180 m radius with a speed of $32 \mathrm{~ms}^{-1}$. What should be the banking angle of the road to avoid changes of skidding of the Vehicle at this speed without taking into consideraion the friction between the tyre and the road ?
A. 45°
B. 60°
C. 30°
D. 15°

Answer
17. When a ceiling fan is switched on it makes 10 rotations in the first 3 s . The number of rotations it makes in the next 3 s , assuming uniform angular acceleration is
A. 40
B. 30
C. 20
D. 10 Answer
18. A body is projected vertically upwards from the surface of a planet of radius r with a velocity equal to $1 / 3$ rd the escape velocity for that planet. The maximum height attained by the body is
A. $R / 2$
B. $R / 3$
C. $R / 9$
D. $R / 8$ Answer
19. A man weighs 80 kg on earth surface. The height above ground where he will weigh 40 kg , is : (radius of earth is 6400 km)
A. 0.31 times r
B. 0.41 times r
C. 0.51 times r
D. 0.61 times r Answer
20. A solid sphere and a hollow sphere, both of the same size and same mass roll down an inclined plane. Then
A. solid sphere reaches the ground first

Like. Share. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com

Answer
21. Three point charges $1 \mathrm{C}, 2 \mathrm{C}$ and 3 C are placed at the corners of an equilateral triangle of side 1 m. The work done in bringing these charges to the vertices of a smaller similar triangle of side 0.5 m is
A. $2.7 \times 10^{10} \mathrm{~J}$
B. $9.9 \times 10^{10} \mathrm{~J}$
C. $10.8 \times 10^{10} \mathrm{~J}$
D. $5.4 \times 10^{10} \mathrm{~J}$

Answer
22. In a simple pendulum the breaking strength of the string is double the weight of the bob. The bob is released from rest when the string is horizontal. The string breaks when it makes an angle θ with the vertical. Then
A. $\theta=30^{\circ}$
B. $\theta=45^{\circ}$
C. $\theta=\cos ^{-1}(2 / 3)$
D. $\theta=\cos ^{-1}(1 / 3)$

Answer
23. An object of mass m falls on to a spring of constant k from h. Then the spring undergoes compression by a length a. The maximum compression x is given by the equation
A. $\mathrm{mgh}=12 \mathrm{kx} 2$
B. $\mathrm{mgh}+\mathrm{x}=12 \mathrm{kx} 2$
C. $m g h+x=-k x$
D. $m g h=-k x$

Answer
24. An adulterated sample of milk has a density of $1032 \mathrm{kgm}^{-3}$, while pure milk has a density of 1080 kgm^{-3}. Then the volume of pure milk in a sample of 10 L of adulterated milk is
A. 0.5 L
B. 1.0 L
C. 4.0 L
D. 3.0 L

Answer
25. Typical silt (hard mud) particle of radius $20 \mu \mathrm{~m}$ is on the top of lake water, its density is 2000 $\mathrm{kg} / \mathrm{m}^{3}$ and the viscosity of lake water is 1.0 mPa , density is $1000 \mathrm{~kg} / \mathrm{m}^{3}$. If the lake is still (hos no internal fluid motion). The terminal speed with which the particle hits the bottom of the lake Like. Share. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com

Physics			
isJEE 2003	ZIgya		
A. $0.67 \mathrm{~m} \pi \mathrm{~m} \pi \mathrm{~m} / \mathrm{s}$		\quad	Exam Year
:---:			
2003			

B.ubly,Assignments, Solved Previous Year Papers. Questions and Answers. Free Forever.
C. $0.87 \mathrm{~mm} / \mathrm{s}$
D. $0.97 \mathrm{~mm} / \mathrm{s}$

Answer
26. If P is the pressure, V the volume, R the gas constant, k the Boltzmann constant and T the absolute temperature, then the number of molecules in the given mass of the gas is given by
A. PVRT
B. PVkT
C. PRT
D. pV

Answer
27. An air bubble is released from the bottom of a pond and is found to expand to thrice its original volume as it reached the surface. If the atmospheric pressure is 100 kPa , the absolute pressure at the bottom of lake in kPa is (assume no temperature variation):
A. 33.3
B. 50.0
C. 300.0
D. 200.0

Answer
28. During an adiabatic process, the volume of a gas is found to be proportional to the cube of its absolute temperature. The ratio C_{p} / C_{v} for the gas is
A. 5/3
B. $4 / 3$
C. $3 / 2$
D. $5 / 4$

Answer

29. 1 g of steam at $100^{\circ} \mathrm{C}$ and equal mass of ice at $0^{\circ} \mathrm{C}$ are mixed. The temperature of the mixture in steady state will be (latent heat of steam $=540 \mathrm{cal} / \mathrm{g}$, latent heat of ice $=80 \mathrm{cal} / \mathrm{g}$)
A. $50^{\circ} \mathrm{C}$
B. $100^{\circ} \mathrm{C}$
C. $67^{\circ} \mathrm{C}$
D. $33^{\circ} \mathrm{C}$

Answer
30. The work done by a gas is maximum when it expands
A. isothermally
B. adiabatically

distance between the nearest crusts is found to be 20 cm . The velocity of the wave is
A. $58 \mathrm{~ms}^{-1}$
B. $580 \mathrm{~ms}^{-1}$
C. $116 \mathrm{~ms}^{-1}$
D. $29 \mathrm{~ms}^{-1}$

Answer
32. A heavy brass sphere is hung from a weightless inelastic spring and as a simple pendulum its time period of oscillation is T . When the sphere is immersed in a non-viscous liquid of density $1 / 10$ that of brass, it will act as a simple pendulum of period
A. T
B. 109 T
C. 910 T
D. 109 T

Answer
33. The distance travelled by a sound wave when a tuning fork completes 25 vib in 16.5 m . If the frequency of the tuning fork is 500 Hz , find the velocity of sound.
A. $350 \mathrm{~ms}^{-1}$
B. $330 \mathrm{~ms}^{-1}$
C. $300 \mathrm{~ms}^{-1}$
D. $450 \mathrm{~ms}^{-1}$

Answer
34. Two instruments having stretched strings are being played in unison. When the tension of one of the instruments is increased by $1 \%, 3$ beats are produced in $2 s$. The initial frequency of vibration of each wire is
A. 300 Hz
B. 500 Hz
C. 1000 Hz
D. 400 Hz

Answer
35. The capacitors A and B have identical geometry. A material with a dielectric constant 3 is present between the plates of B. The potential difference across A and B are respectively

A. $2.5 \mathrm{~V}, 7.5 \mathrm{~V}$
B. $2 \mathrm{~V}, 8 \mathrm{~V}$
C. $8 \mathrm{~V}, 2 \mathrm{~V}$
D. $7.5 \mathrm{~V}, 2.5 \mathrm{~V}$

Answer
36. An electric bulb is marked $100 \mathrm{~W}, 230 \mathrm{~V}$. If the supply voltage drops to 115 V , what is the total energy produced by the bulb in 10 min ?
A. 30 kJ
B. 20 kJ
C. 15 kJ
D. 10 kJ

Answer
37. A circular coil carrying a current has a radius R. The ratio of magnetic induction at the centre of the coil and at a distance equal to $3 R$ from the centre of the coil on the axis is
A. $1: 1$
B. $1: 2$
C. $8: 1$
D. $1: 8$

Answer
38. The examples of diamagnetic, paramagnetic and ferromagnetic materials are respectively
A. copper, aluminium, iron
B. aluminium, copper, iron
C. copper, iron, aluminium
D. aluminium, iron, copper

Answer
39. In the Wheatstone's bridge shown below, in order to balance the bridge we must have

A. $R_{1}=3 \Omega, R_{2}=3 \Omega$
B. $R_{1}=6 \Omega, R_{2}=1.5 \Omega$
C. $R_{1}=1.5 \Omega, R_{2}=$ any finite value
D. $R_{1}=3 \Omega, R_{2}=$ any finite value

Answer
40. Four 10 F capacitors are connected to a 500 V supply as shown in the figure. The equivalent capacitance of the network is

A. $40 \mu \mathrm{~F}$
B. $20 \mu \mathrm{~F}$
C. $13.3 \mu \mathrm{~F}$
D. $10 \mu \mathrm{~F}$

Answer
41. A resistor is constructed as hollow cylinder of dimensions $r_{a}=0.5 \mathrm{~cm}$ and $r_{b}=1.0 \mathrm{~cm}$ and $\rho=3$ $.5 \mathrm{x}-10^{-5} \Omega \mathrm{~m}$. The resistance of the configuration for the length of 5 cm cylinder is
A. $7.42 \times 10^{-3} \Omega$
B. $10.56 \times 10^{-3} \Omega$
C. $14.38 \times 10^{-3} \Omega$
42. The resistantes are contrected betwedndythepignments,n Solved Previous Year Papers. Questions and Answers. Free Forever.

A. 205Ω
B. 10Ω
C. 3.5Ω
D. 5Ω

Answer
43. The figure below shows a 2.0 V potentiometer used for the determination of internal resistance of a 2.5 V cell. The balance point of the cell in the open circuit is 75 cm . When a resistor of 10Ω is used in the external circuit of the cell, the balance point shifts to 65 cm length of potentiometer wire. Then the internal resistance of the cell is

A. 2.5Ω
B. 2.0Ω
C. 1.54Ω
D. 1.0Ω

Answer
44. An electric heater boils 1 kg of water in a time t_{1}. Another heater boils the same amount of water in a time t_{2}. When the two heaters are connected in parallel, the time required by them together to boil the same amount of water is
A. $t_{1}+t_{2}$
B. $\mathrm{t}_{1} \mathrm{t}_{2}$
C. t1t2t1 + t2

Like. Share. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com
45. Two Stuhth, Assigumentstsolved Previpus Year Papers • Questipns and Answers. Free Forever other perpendicularly without touching but being close to each other, as shown in the figure. The regions which contain some points of zero magnetic induction are

A. I and II
B. I and III
C. I and IV
D. II and III

Answer
46. The force on a conductor of length I placed in a magnetic field of magnitude B and carrying a current I is given by (θ is the angle, the conductor makes with the direction of B)
A. $F=\| \mid B \sin \theta$
B. $F=I^{2} \mid B^{2} \sin \theta$
C. $F=\| B \cos \theta$
D. $F=I 2 I B \sin \theta$

Answer
47. A needle made of bismuth is suspended freely in a magnetic field. The angle which the needle makes with the magnetic field is
A. 0°
B. 45°
C. 90°
D. 180°

Answer
48. The resonant frequency of an LCR circuit occurs at a frequency equal to
A. 1LC
B. 1 LC
C. 1 LCR
D. 1 CR

Stuly
D. i12-i222

Answer
50. The coefficient of mutual inductance between the primary and secondary of the coil is 5 H . A current of 10 A is cut off in 0.5 s . The induced emf is
A. 1 V
B. 10 V
C. 5 V
D. 100 V

Answer
51. If a transformer of an audio amplifier has output impedance 8000Ω and the speaker has input impedance of 8Ω, the primary and secondary turns of this transformer connected between the output of amplifier and to loud speaker should have the ratio
A. 1000: 1
B. $100: 1$
C. $1: 32$
D. $32: 1$

Answer
52. In the electromagnetic spectrum, the visible spectrum lies between
A. radiowaves and microwaves
B. infrared and ultraviolet rays
C. microwaves and infrared spectrum
D. X-ray and γ-ray spectrum

Answer
53. Maxwell in his famous equation of electromagnetism introduced the concept
A. AC current
B. DC current
C. displacement current
D. impedance

Answer
54. Out of the following electromagnetic radiations, which has the shortest wavelength ?
A. Radiowaves
B. Infrared
C. X-rays
D. Visible light

Answer
55. A charged oil drop of mass $9.75 \times 10^{-15} \mathrm{~kg}$ and charge $30 \times 10^{-16} \mathrm{C}$ is suspended in a uniform Like. Share. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com
B. $300 \mathrm{~V} / \mathrm{m}$
C. $325 \mathrm{~V} / \mathrm{m}$
D. $32.5 \mathrm{~V} / \mathrm{m}$

Answer
56. In Young's double slit experiment, the width of one of the slits is slowly increased to make it twice the width of the other slit. Then in thei nterference pattern
A. the intensity of maxima increase while that of minima decrease
B. the intensities of both maxima and minima decrease
C. the intensities of both maxima and minima increase
D. the intensity of maxima decrease while that of minima increase Answer
57. Two coherent sources whose intensity ratio is 81:1 produce interference fringes. The ratio of minimum to maximum intensity, $\mathrm{i}, \mathrm{e} \mathrm{I}_{\text {min }}: \mathrm{I}_{\text {max }}$ is
A. $16: 25$
B. $9: 1$
C. 1:9
D. $25: 16$

Answer
58. An infinitely long rod lies along the axis of concave mirror of focal length f. The near end of the rod is at a distance $x>f$ from the mirror. Then the length of the image of the rod is
A. $f 2 x+f$
B. $f 2 x$
C. $f 2 x-f$
D. $x f x+f$

Answer
59. A beaker containing a liquid appears to be half when it is actually two third full. The refractive index of liquid is
A. $7 / 6$
B. $6 / 5$
C. $4 / 3$
D. $5 / 4$

Answer
60. If h_{1} and h_{2} are the heights of the images in conjugate position of a convex lens, then the height of the object is
A. $h_{1}+h_{2}$

Like. Share. Bơokmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com
D. nIT2

Study, Assignments, Solved Previous Year Papers . Questions and Answers. Free Forever. Answer
61. The power of the combination of a convex lens of focal length 50 cm and concave lens of focal length 40 cm is
A. +1 D
B. -1 D
C. -0.5 D
D. +0.5 D

Answer
62. Image formed by a convex lens is virtual and erect when the object is placed
A. at F
B. between F and the lens
C. at 2 F
D. beyond 2 F

Answer
63. The rest mass of photon is
A. hvc
B. hvc2
C. $h c \lambda$
D. zero

Answer
64. If the wavelength of incident light changes from 400 nm to 300 nm , the stopping potential for photoelectrons emitted from a surface becomes approximately
A. 1.0 V greater
B. 1.0 V smaller
C. 0.5 V greater
D. 0.5 V smaller

Answer
65. Let the potential energy of hydrogen atom in the ground state be regarded as zero. Then its potential energy in the first excited state will be
A. 20.4 eV
B. 13.6 eV
C. 10.2 eV
D. 6.8 eV

Answer
66. Two radioactive nuclides x and y have half-lives 1 h and 2 h respectively. Initially the samples have equal number of nuclei. After $4 h$ the ratio of the numbers of x and y is

Stu_dy, Assignments, Solved Previous Year Papers . Questions and Answers. Free Forever.
Answer
67. ${ }_{92} \mathrm{U}^{238}$ decays successively to form ${ }_{90} \mathrm{Th}^{234},{ }_{91} \mathrm{~Pa}^{234},{ }_{92} \mathrm{U}^{234},{ }_{90} \mathrm{Th}^{230},{ }_{88} \mathrm{Ra}^{226}$ then during the reaction the number of α-particles emitted is
A. 4
B. 3
C. 5
D. 2

Answer
68. Let n_{e} and n_{h} represent the number density of electrons and holes in a semiconductor. Then
A. $n_{e}>n_{h}$ if the semiconductor is intrinsic
B. $\mathrm{n}_{\mathrm{e}}<\mathrm{n}_{\mathrm{h}}$ if the semiconductor is intrinsic
C. $n_{e} \neq n_{h}$, if the semiconductor is intrinsic
D. $n_{e}=n_{h}$, if the semiconductor is intrinsic

Answer
69. In a n-p-n transistor amplifier, the collector current is 9 mA . If 90% of the electrons from the emitter reach the collector, then
A. $\alpha=0.9, \beta=9.0$
B. the base current is 10 mA
C. the emitter current is 1 mA
D. $\alpha=9.0, \beta=0.9$

Answer
70. In a properly biased transistor
A. both depletion layers are equally large
B. both depletion layers are equally small
C. emitter-base depletion layer is large but base-collector depletion layer is small
D. emitter-base depletion layer is small but base-collector depletion layer is large.

Answer
71. A dim star of magnitude +14.5 explodes into a nova of magnitude +2 . The factor by which the brightness of the star has increased is
A. 12.5
B. 10^{2}
C. 10^{5}
D. 10^{4}

B. It willtradtiate preduminantly in the infrared

Studywistiagmants Solved Provipus YeariliPaperset Questions and Answers. Free Forever.
D. the output of the radiated energy will be eight times smaller

Answer

