www.zigya.com

Previous Year Paper

Physics - 2005

Study, Assignments, Solved Previous Year Papers . Questions and Answers. Free Forever.

: 三 Multiple Choice Questions

1. The dimensional formula of magnetic flux is
A. $\left[M^{1} L^{0} T^{-2} A^{-1}\right]$
B. $\left[M^{1} L^{2} T^{-1} A^{-1}\right]$
C. $\left[M^{1} L^{2} T^{-2} A^{-1}\right]$
D. $\left[M^{1} L^{2} T^{0} A^{-1}\right]$

Answer
2. A physical quantity A is related to four observables a, b, c and d as follows

$$
A=a 2 b 3 c d
$$

The percentage errors of measurement in a, b, c and d are $1 \%, 3 \%, 2 \%$ and 2% respectively. What is the percentage error in the quantity A ?
A. 12%
B. 7%
C. 14 \%
D. 16 \%

Answer
3. A body starting from rest moves with constant acceleration. The ratio of distance covered by the body during the 5th second to that covered in 5 s is
A. 925
B. 35
C. 255
D. 125

Answer
4. The area under acceleration-time graph gives
A. distance travelled
B. change in acceleration
C. force acting
D. change in velocity

Answer
5. A particle is displaced from a position $2 \mathrm{i}^{\wedge}-\mathrm{j}^{\wedge}+\mathrm{k}^{\wedge}$ to another position $3 \mathrm{i}^{\wedge}+2 \mathrm{j}^{\wedge}-2 \mathrm{k}^{\wedge}$ under the action of the force of $2 \mathrm{i}^{\wedge}+\mathrm{j}^{\wedge}-\mathrm{k}^{\wedge}$. The work done by the force in an arbitrary unit is
A. 8

Like. Share. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com

Stupdy, Assignments, Solved Previous Year Papers . Questions and Answers. Free Forever.
Answer
6. From the top of tower, a stone is thrown up. It reaches the ground in t_{1} second. A second stone thrown down with the same speed reaches the ground in t_{2} second. A third stone released from rest reaches the ground in t_{3} second. Then
A. $\mathrm{t} 3=\mathrm{t} 1+\mathrm{t} 22$
B. $\mathrm{t} 3=\mathrm{t} 1 \mathrm{t} 2$
C. $1 \mathrm{t} 3=1 \mathrm{t} 1-1 \mathrm{t} 2$
D. $\mathrm{t} 32=\mathrm{t} 22-\mathrm{t} 12$

Answer
7. An object is projected at an angle of 45° with the horizontal. The horizontal range and maximum height reached will be in the ratio
A. $1: 2$
B. $2: 1$
C. $1: 4$
D. $4: 1$

Answer
8. If the length of the second's hand in a stop-clock is 3 cm , the angular velocity and linear velocity of the tip is
A. $0.2047 \mathrm{rad} / \mathrm{s}, 0.0314 \mathrm{~ms}^{-1}$
B. $0.2547 \mathrm{rad} / \mathrm{s}, 0.314 \mathrm{~ms}^{-1}$
C. $0.1472 \mathrm{rad} / \mathrm{s}, 0.06314 \mathrm{~ms}^{-1}$
D. $0.1047 \mathrm{rad} / \mathrm{s}, 0.00314 \mathrm{~ms}^{-1}$

Answer
9. A player caught a cricket ball of mass 150 g moving at the rate of $20 \mathrm{~ms}^{-1}$. If the catching process be completed in 0.1 s , the force of the blow exerted by the ball on the hands of the player is
A. 0.3 N
B. 30 N
C. 300 N
D. 3000 N

Answer
10. A uniform metal chain is placed on a rough table such that one end of it hangs down over the edge of the table. When one-third of its length hangs over the edge, the chain starts sliding. Then the coefficient of static friction is

Like. ${ }^{\text {S Shảre. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com }}$

Studdy, Assignments, Solved Previous Year Papers. Questions and Answers. Free Forever.
Answer
11. Two masses M and $M / 2$ are joined together by means of light inextensible string passed over a frictionless pulley as shown in the figure. When the bigger mass is released, the small one will ascend with an acceleration of

A. g3
B. $3 g 2$
C. g2
D. g

Answer
12. In elastic collision
A. both momentum and kinetic energies are conserved
B. both momentum and kinetic energies are not conserved
C. only energy is conserved
D. only mechanical energy is conserved

Answer
13. A ball is released from the top of a tower. The ratio of work done by force of gravity in first, second and third second of the motion of the ball is
A. $1: 2: 3$
B. 1:4:9
C. $1: 3: 5$
D. $1: 5: 3$

Answer
14. When the kinetic energy of a body is doubled, its momentum increases by times
A. 2
B. 2
C. 4
D. 22

Answer

Study, Assignments, Solved Previous Year Papers . Questions and Answers. Free Forever.

A. $\mathrm{PQ}+\mathrm{PR}+\mathrm{QR} 3$
B. $P Q+P R 3$
C. $P Q+Q R 3$
D. $P R+Q R 3$

Answer
16. The moment of inertia of a thin rod of mass M and length L, about an axis perpendicular to the rod at a distance L4 from one end is
A. ML26
B. ML212
C. 7ML248
D. 7ML212

Answer
17. A body rolls down an inclined plane. If its kinetic energy of rotation is 40% of its kinetic energy of translation, then the body is
A. solid cylinder
B. solid sphere
C. disc
D. ring

Answer
18. Which of the following statements about the gravitational constant is true ?
A. It is a force
B. It has no unit
C. It does not depend on the nature of the medium in which the bodies are kept
D. It depends on the value of the masses

Answer
19. Four particles each of mass M, are located at the vertices of a square with side L. The gravitational potential due to this at the centre of the square is
A. -32 GML
B. -64 GML 2
C. zero
D. 32 GML

Like. Share. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com

| Physics | |
| :---: | :---: | :---: |
| AnswgEE 2005 | |
| 20. Two identicat solich copper | Exam Year
 2005 |

A. R^{2}
B. R^{-2}
C. R^{4}
D. R^{-4}

Answer
21. The modulus of elasticity is dimensionally equivalent to
A. strain
B. force
C. stress
D. coefficient of viscosity

Answer

22. Radius of an air bubble at the bottom of the lake is r and it becomes $2 r$ when the air bubble rises to the top surface of the lake. If P cm of water be the atmospheric pressure, then the depth of the lake is
A. $2 P$
B. 8 P
C. 4 P
D. 7 P

Answer
23. A manometer connected to a closed tap reads $4.5 \times 10^{5} \mathrm{~Pa}$. When the tap is opened the reading of the manometer falls to $4 \times 10^{5} \mathrm{~Pa}$. Then the velocity of flow of water is
A. $7 \mathrm{~ms}^{-1}$
B. $8 \mathrm{~ms}^{-1}$
C. $10 \mathrm{~ms}^{-1}$
D. $12 \mathrm{~ms}^{-1}$

Answer
24. What is the velocity v of a metallic ball of radius r falling in a tank of liquid at the instant when its acceleration is one-half that of a freely falling body ? (The densities of metal and of liquid are ρ and σ respectively, and the viscosity of the liquid is η)
A. $\mathrm{r} 2 \mathrm{~g} 9 \eta \rho-2 \sigma$
B. $\mathrm{r} 2 \mathrm{~g} 9 \eta 2 \rho-\sigma$
C. $\mathrm{r} 2 \mathrm{~g} 9 \mathrm{n} \rho-\sigma$
D. $2 r 2 a 9 n-0-\sigma$

Ansewerhare. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com
A. $2 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$

Study, Assignments, Solved Previous Year Papers. Questions and Answers. Free Forever.
C. $4.2 \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
D. $2 \mathrm{cal} \mathrm{mol}{ }^{-1} \mathrm{~K}^{-1}$

Answer
26. The volume of a metal sphere increases by 0.24% when its temperature is raised by $40^{\circ} \mathrm{C}$. The coefficient of linear expansion of the metal is
A. 2×10^{-5}
B. 6×10^{-5}
C. 18×10^{-5}
D. 1.2×10^{-5}

Answer
27. The temperature of equal masses of three different liquids A, B and C are $12^{\circ} \mathrm{C}, 19^{\circ} \mathrm{C}$ and $28^{\circ} \mathrm{C}$ respectively. The temperature when A and B are mixed is $16^{\circ} \mathrm{C}$ and when B and C are mixed is $23^{\circ} \mathrm{C}$. The temperature when A and C are mixed is
A. $18.2^{\circ} \mathrm{C}$
B. $22^{\circ} \mathrm{C}$
C. $20.2^{\circ} \mathrm{C}$
D. $24.2^{\circ} \mathrm{C}$

Answer
28. The time period of the second's hand of a watch is
A. 1 h
B. 1 s
C. 12 h
D. 1 min

Answer
29. A particle starts SHM from the mean position. Its amplitude is a and total energy E. At one instant its kinetic energy is 3E4. Its displacement at that instant is
A. a2
B. a 2
C. a32
D. a3

Answer
30. A particle executes linear simple harmonic motion with an amplitude of 2 cm . When the particle is at 1 cm from the mean position the magnitude of its velocity is equal to that of its

| Physics
 A.JEERZZ005
 B. $2 \pi 3$ | ZIgyo |
| :---: | :---: | | Exam Year |
| :---: |
| 2005 |

Stud ${ }_{1}$ 3 Assignments, Solved Previous Year Papers . Questions and Answers. Free Forever.
D. 32π

Answer

31. A closed organ pipe and an open organ pipe are tuned to the same fundamental frequency. The ratio of their lengths is
A. 1:1
B. $2: 1$
C. $1: 4$
D. $1: 2$

Answer
32. An observer standing near the sea shore os $54 / \mathrm{min}$. If the wavelength of the water wave is 10 m then the velocity of water wave is
A. $540 \mathrm{~ms}^{-1}$
B. $5.4 \mathrm{~ms}^{-1}$
C. $0.184 \mathrm{~ms}^{-1}$
D. $9 \mathrm{~ms}^{-1}$

Answer
33. A set of 24 tuning forks are so arranged that each gives 6 beats/s with the previous one. If the frequency of the last tuning fork is double that of the first, frequency of the second tuning fork is
A. 138 Hz
B. 132 Hz
C. 144 Hz
D. 276 Hz

Answer
34. A 10Ω electric heater operates on a 110 V line. The rate at which heat is developed in watts is
A. 1310 W
B. 670 W
C. 810 W
D. 1210 W

Answer
35. For a certain thermocouple, if the temperature of the cold junction is $0^{\circ} \mathrm{C}$, the neutral temperature and inversion temperatures are $285^{\circ} \mathrm{C}$ and $570^{\circ} \mathrm{C}$ respectively. If the cold junction is brought to $10^{\circ} \mathrm{C}$, then the new neutral and inversion temperatures are respectively
A. $285^{\circ} \mathrm{C}$ and $560^{\circ} \mathrm{C}$
B. $285^{\circ} \mathrm{C}$ and $570^{\circ} \mathrm{C}$
C. $295^{\circ} \mathrm{C}$ and $560^{\circ} \mathrm{C}$

36. The frequency of X-rays, y -rays and ultraviolet rays are respectivety a, bamuc them
A. Study $_{\mathrm{d}}^{\mathrm{K}}$ Asssignments, Solved Previous Year Papers. Questions and Answers. Free Forever.
B. $a>b, b>c$
C. $a>b, b<c$
D. $a<b, b<c$

Answer
37. If c is the speed of electromagnetic waves in vacuum, its speed in a medium of dielectric constant K and relative permeability μ_{r} is
A. $v=1 \mu \mathrm{~K}$
B. $v=c \mu r K$
C. $v=c \mu r K$
D. $v=K \mu r c$

Answer
38. The waves relevant to telecommunications are
A. visibe light
B. infrared
C. ultraviolet
D. microwave

Answer
39. The electrostatic field due to a charged conductor just outside the conductor is
A. zero and parallel to the surface at every point inside the conductor
B. zero and is normal to the surface at every point inside the conductor
C. parallel to the surface at every point and zero inside the conductor
D. normal to the surface at every point and zero inside the conductor Answer
40. A point charge $+q$ is placed at the midpoint of a cube of side a. The electric flux emerging from the cube is
A. zero
B. $3 q a 2 \varepsilon 0$
C. qع0
D. $\varepsilon 04 q a 2$ Answer
41. Figure below shows four plates each of area A and separated from one another by a distance d. What is the capacitance between P and Q ?

Like. Share. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com

Physics A.JEEAZ005 B. ZEOAC	ZIgyo
Exam Year 2005	

Stugivo Assignments, Solved Previous Year Papers. Questions and Answers. Free Forever.
D. $4 \varepsilon 0 \mathrm{Ad}$

Answer
42. A soap bubble is charged to a potential of 16 V . Its radius is, then doubled. The potential of the bubble now will be
A. 16 V
B. 8 V
C. 4 V
D. 2 V

Answer
43. A parallel plate capacitor of capacitance 10 F is charged to $1 \mu \mathrm{C}$. The charging battery is removed and then the separation between the plates is doubled. Work done during the process is
A. 5 mJ
B. 0.05 mJ
C. 1 mJ
D. 10 mJ

Answer
44. In which of the following substances does resistance decrease with increase in temperature ?
A. Copper
B. Carbon
C. Constantant
D. Silver

Answer
45. Resistors P and Q are connected in the gaps of the meter bridge. The balancing point is obtained 13 m from the zero end. If a 6Ω resistance is connected in series with P the balance point shifts to 23 m from the same end. P and Q are
A. 4,2
B. 2,4
C. both (a) and (b)
D. neither (a) nor (b)

Answer
46. The currents i_{1} and i_{2} through the resistors $R_{1}(=10 \Omega)$ and $R_{2}(=30 \Omega)$ in the circuit diagram with $\mathrm{E}_{1}=3 \mathrm{~V}, \mathrm{E}_{2}=3 \mathrm{~V}$ and $\mathrm{E}_{3}=2 \mathrm{~V}$ are respectively

Study, As®ignments, Solved Previous YeaßPapers. Questions and Answers. Free Forever.

A. $0.2 \mathrm{~A}, 0.1 \mathrm{~A}$
B. $0.4 \mathrm{~A}, 0.2 \mathrm{~A}$
C. $0.1 \mathrm{~A}, 0.2 \mathrm{~A}$
D. $0.2 \mathrm{~A}, 0.4 \mathrm{~A}$

Answer
47. An α-particle with a specific charge of $2.5 \times 10^{7} \mathrm{C} \mathrm{kg}^{-1}$ moves with a speed of $2 \times 10^{5} \mathrm{~ms}^{-1}$ in a perpendicular magnetic field of 0.05 T . Then the radius of the circular path described by it is
A. 8 cm
B. 4 cm
C. 16 cm
D. 2 cm

Answer
48. A cyclotron can be used to accelerate
A. α-particles
B. β-particles
C. neutrons
D. neutrino

Answer
49. The magnitude of the earth's magnetic field at a place is B_{0} and the angle of dip is δ. A horizontal conductor of length I lying magnetic north-south moves eastwards with a velocity v. The emf induced across the conductor is
A. zero
B. $\mathrm{B}_{0} \mathrm{Iv} \sin \delta$
C. $\mathrm{B}_{0} \mathrm{Iv}$
D. $B_{0} \operatorname{lv} \cos \delta$

Answer
50. A milliammeter of range $0-30 \mathrm{~mA}$ has internal resistance of 20Ω. The resistance to be connected in series to convert it into a voltmeter of maximum reading 3 V is
A. 49Ω
 magnetic field (in tesla) at the centre of the semicircle is
A. $\pi 2 I I \times 10-7$
B. $\pi \| \times 10-7$
C. $\pi \| 2 \times 10-7$
D. $\pi|2| \times 10-7$

Answer
52. A coil having an inductance of 0.5 H carries a current which is uniformly varying from 0 to 10 A in 2 s . The emf (in volts) generated in the coil is
A. 10
B. 5
C. 2.5
D. 1.25

Answer
53. If an alternating voltage is represented as $E=141 \sin (628 t)$, then the rms value of the voltage and the frequency are respectively
A. $141 \mathrm{~V}, 628 \mathrm{~Hz}$
B. $100 \mathrm{~V}, 50 \mathrm{~Hz}$
C. $100 \mathrm{~V}, 100 \mathrm{~Hz}$
D. $141 \mathrm{~V}, 100 \mathrm{~Hz}$

Answer
54. A step-down transformer is used on a 1000 V line to deliver 20 A at 120 V at the secondary coil. If the efficiency of the transformer is 80%, the current drawn from the line is
A. 3 A
B. 30 A
C. 0.3 A
D. 2.4 A

Answer
55. For the series LCR circuit shown in the figure, what is the resonance frequency and the amplitude of the current at the resonating frequency ?

56. A red coloured object illuminated by mercury vapour lamp, when seen through a green filter, will appear
A. red
B. blue
C. black
D. white Answer
57. Time taken by sunlight to pass through a window of thickness 4 mm whose refractive index is 32 is
A. $2 \times 10^{-4} \mathrm{~s}$
B. $2 \times 10^{4} \mathrm{~s}$
C. $2 \times 10^{-11} \mathrm{~s}$
D. $2 \times 10^{11} \mathrm{~s}$ Answer
58. Two thin lenses of focal length 20 cm and 25 cm are in contact. The effective power of the combination is
A. 4.5 D
B. 18 D
C. 9 D
D. 2.5 D

Answer
59. The magnification of the image when an object is placed at a distance x from the principal focus of a mirror of focal length f
A. $x f$
B. $1+\mathrm{fx}$
C. fx
D. $1-\mathrm{fx}$

Answer
60. In the Young's double slit experiment, the central maxima is observed $t 0$ be I_{0}. If one of the slits is covered, then the intensity at the central maxima will become
A. 102
B. 102
C. 104
61. The rgस्स
B.tudy, Assignments, Solved Previous Year Papers . Questions and Answers. Free Forever.
C. $1: 2$
D. $4: 1$

Answer
62. Which of the following is not conserved in nuclear reaction ?
A. Total energy
B. Mass number
C. Number of fundamental particles
D. Nucleon number

Answer
63. The number of α-particles and β-particles respectively emitted in the reaction ${ }_{88} \mathrm{~A}^{196} \rightarrow{ }_{78} \mathrm{~B}^{164}$ are
A. 8 and 8
B. 8 and 6
C. 6 and 8
D. 6 and 6

Answer

64. The counting rate observed from a radioactive source at $t=0 \mathrm{~s}$ was 1600 count/s and at $\mathrm{t}=8 \mathrm{~s}$ it was 100 counts/s. The counting rate observed as counts per second at $t=6 \mathrm{~s}$, will be
A. 400
B. 300
C. 250
D. 200

Answer
65. If D_{e}, D_{b} and D_{c} are the doping levels of emitter, base and collector respectively of a transistor, then
A. $D_{e}=D_{b}=D_{c}$
B. $D_{e}<D_{b}=D_{c}$
C. $D_{e}>D_{c}>D_{b}$
D. $D_{e}<D_{b}<D_{c}$

Answer
66. The relation between α and β parameters of a transistor is
A. $\alpha=1+\beta \beta$
B. $\alpha=1-\beta \beta$
C. $\alpha=\beta 1+\beta$
D. $\alpha=\beta 1-\beta$

A. 8.8 mA
B. 1 mA
C. 9.9 mA
D. 20 mA

Answer
68. A transistor connected at common-emitter mode contains load resistance of $5 \mathrm{k} \Omega$ and an input resistance of $1 \mathrm{k} \Omega$. If the input peak voltage is 5 mV and the current gain is 50 , find the voltage gain
A. 250
B. 500
C. 125
D. 50

Answer
69. If n_{1} and n_{2} are the refractive indices of the core and the cladding respectively of an optic fibre, then
A. $\mathrm{n}_{1}=\mathrm{n}_{2}$
B. $\mathrm{n}_{1}<\mathrm{n}_{2}$
C. $\mathrm{n}_{2}<\mathrm{n}_{1}$
D. $n_{2}=2 n_{1}$

Answer
70. If a radio receiver amplifies all the signal frequencies equally well, it is said to have high
A. fidelity
B. distortion
C. sensibility
D. sensitivity

Answer
71. A TV tower has a height of 100 m . What is the maximum distance up to which the TV transmission can be received $\left(R=8 \times 10^{6} \mathrm{~m}\right)$?
A. 34.77 km
B. 32.70 km
72. A black body has maximum wavelength λ_{m} at 2000 K . Its correspontinty wavelentythat 3000 K

Study, Assignments, Solved Previous Year Papers . Questions and Answers. Free Forever. will be
A. $32 \lambda \mathrm{~m}$
B. $23 \lambda \mathrm{~m}$
C. $1681 \mathrm{\lambda m}$
D. $8116 \mathrm{\lambda m}$

Answer

