www.zigya.com

Previous Year Paper

Physics - 2007

: \exists Multiple Choice Questions

1. The work done in moving an alpha particle between two points having potential difference 25 V is
A. $8 \times 10^{-18} \mathrm{~J}$
B. $8 \times 10^{-19} \mathrm{~J}$
C. $8 \times 10^{-20} \mathrm{~J}$
D. $8 \times 10^{-16} \mathrm{~J}$

Answer
2. The physical quantity angular momentum has the same dimensions as that of
A. work
B. force
C. Planck's constant
D. torque

Answer
3. The values of two resistors are $R_{1}=(6 \pm 0.3) \mathrm{k} \Omega$ and $R_{2}=(10 \pm 0.2) \mathrm{k} \Omega$. The percentage error in the equivalent resistance when they are connected in parallel is
A. 5.125%
B. 2%
C. 10.125%
D. 7%

Answer
4. Two trains are moving with equal speed in opposite directions along two parallel railway tracks. If the wind is blowing with speed u along the track so that the relative velocities of the trains with respect to the wind are in the ratio $1: 2$, then the speed of each train must be
A. $3 u$
B. 2 u
C. $5 u$
D. 4 u

Answer
5. Two balls are dropped to the ground from different heights. One ball is dropped 2 s after the other but they both strike the ground at the same time. If the first ball takes 5 s to reach the

| Physics
 A.jEE 2007
 B. 20 | ZIIOYO |
| :---: | :---: | | Exam Year |
| :---: |
| 2007 |

Studyo Assignments, Solved Previous Year Papers. Questions and Answers. Free Forever.
D. 40 m

Answer
6. A ball is thrown vertically upwards with a velocity of $25 \mathrm{~ms}^{-1}$ from the top of a tower of height 30 m . How long will it travel before it hits ground ?
A. 6 s
B. 5 s
C. 4 s
D. 12 s

Answer
7. A ball is projected from the ground at a speed of $10 \mathrm{~ms}^{-1}$ making an angle of 30° with the horizontal. Another ball is simultaneously released from a point on the vertical line along the maximum height of the projectile. The initial height of the second ball is ($\mathrm{g}=10 \mathrm{~ms}^{-2}$)
A. 6.25 m
B. 2.5 m
C. 1.25 m
D. 5 m

Answer
8. The sum of the magnitudes of two forces acting at a point is 18 N and the magnitude of their resultant is 12 N . If the resultant is at 90° with the smaller force, the magnitude of the forces in N are
A. 6,12
B. 11,7
C. 5,13
D. 14,4

Answer
9. The position of a particle is given by $r=i^{\wedge}+2 j^{\wedge}-k^{\wedge}$ and its linear momentum is given by $p=3 i^{\wedge}+4 j^{\wedge}-2 k^{\wedge}$. Then its angular momentum, about the origin is perpendicular to
A. yz-plane
B. z-axis
C. y-axis
D. x-axis

Answer
10. A mass of 6 kg is suspended by a rope of length 2 m from a ceiling. A force of 50 N in the horizontal direction is applied at the mid-point of the rope. The angle made by the rope with the

Like.Asha@e. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com

Physics BjEE ${ }^{\circ} 2007$	ZIgyo		
C. 30°		\quad	Exam Year
:---:			
2007			

Studfo Assignments, Solved Previous Year Papers . Questions and Answers. Free Forever.
Answer
11. A shell at rest at the origin explodes into three fragments of masses $1 \mathrm{~kg}, 2 \mathrm{~kg}$ and m kg . The 1 kg and 2 kg pieces fly off with speeds of $5 \mathrm{~ms}^{-1}$ along x -axis and $6 \mathrm{~ms}^{-2}$ along y -axis respectively. If the m kg piece flies off with a speed of $6.5 \mathrm{~ms}^{-1}$, the total mass of the shell must be
A. 4 kg
B. 5 kg
C. 3.5 kg
D. 4.5 kg

Answer
12. If the road is unbanked and the coefficient of friction between the road and the tyres is 0.8 , then the maximum speed with which an automobile can move around a curve of 84.5 m radius without slipping ($\mathrm{g}=10 \mathrm{~ms}^{-2}$) is
A. $26 \mathrm{~ms}^{-1}$
B. $67.6 \mathrm{~ms}^{-1}$
C. $13 \mathrm{~ms}^{-1}$
D. $36.7 \mathrm{~ms}^{-1}$

Answer
13. A rod $A B$ of mass 10 kg and length 4 m rests on a horizontal floor with end A fixed so as to rotate it in vertical plane about perpendicular axis passing through A. If the work done on the rod is 100 J , the height to which the end B be raised vertically above the floor is
A. 1.5 m
B. 2.0 m
C. 1.0 m
D. 2.5 m

Answer
14. A particle is released from a height S. At certain height its kinetic energy is three times its potential energy. The height and speed of the particle at that instant are respectively
A. $\mathrm{S} 4,3 \mathrm{gS} 2$
B. $\mathrm{S} 4,3 \mathrm{gS} 2$
C. $\mathrm{S} 2,3 \mathrm{gS} 2$
D. $\mathrm{S} 4,3 \mathrm{gS} 2$

Answer
15. An electric pump is used to fill an overhead tank of capacity $9 \mathrm{~m}^{3}$ kept at a height of 10 m above the ground. If the pump takes 5 min to fill the tank by consuming 10 kW power, the efficiency of Like. Share. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com

zIgyo

Exam Year 2007
A. 60 \%

Study, Assignments, Solved Previous Year Papers . Questions and Answers. Free Forever. B. 40 \%
C. 20 \%
D. 30%

Answer
16. A sphere of mass m and redius rolls on a horizontal plane without slipping with the speed u. Now, if it rolls up vertically, the maximum height it would attain will be
A. 3 u 24 g
B. 5 u 22 g
C. 7 u 210 g
D. u 22 g

Answer
17. If the earth were to contract such that its radius becomes one quarter, without change in its mass, the duration of one full day would be
A. 3 h
B. 1.5 h
C. 6 h
D. 4 h

Answer
18. A satellite is launched in a circular orbit of radius R around the earth. A second satellite is launched into an orbit of radius 1.01 R . The period of second satellite is longer than the first one (approximately) by
A. 1.5%
B. 0.5%
C. 3%
D. 1%

Answer
19. The change in potential energy when a body of mass m is raised to a height $n R$ from earth's surface is ($R=$ radius of the earth)
A. $m g R n n-1$
B. $m g R$
C. $m g R n n+1$
D. $m g R n 2 n 2+1$

Answer
20. The escape velocity of body on the surface of earth is $11.2 \mathrm{~km} / \mathrm{s}$. If the mass of the earth is doubled and its radius halved, the escape velocity becomes
A. $5.6 \mathrm{~km} / \mathrm{s}$
B. $11.2 \mathrm{~km} / \mathrm{s}$

Like. Share. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com

AnswStudy, Assignments, Solved Previous Year Papers. Questions and Answers. Free Forever.
21. A train is moving at $30 \mathrm{~ms}^{-1}$ in still air. The frequency of the locomotive whistle is 500 Hz and the speed of sound is $345 \mathrm{~ms}^{-1}$. The apparent wavelength of sound in front of and behind the locomotive are respectively
A. $0.80 \mathrm{~m}, 0.63 \mathrm{~m}$
B. $0.63 \mathrm{~m}, 0.80 \mathrm{~m}$
C. $0.50 \mathrm{~m}, 0.85 \mathrm{~m}$
D. $0.63 \mathrm{~m}, 0.75 \mathrm{~m}$

Answer
22. An open organ pipe is closed suddenly with the result that the second overtone of the closed pipe is found to be higher in frequency by 100 than the first overtone of the original pipe. Then the fundamental frequency of the open pipe is
A. $200 \mathrm{~s}^{-1}$
B. $100 \mathrm{~s}^{-1}$
C. $300 \mathrm{~s}^{-1}$
D. $250 \mathrm{~s}^{-1}$

Answer
23. A transverse wave is described by the equation $y=y 0 \sin 2 \pi f t-x \lambda$. The maximum particle velocity is equal to four times the wave velocity, if
A. $\lambda=\pi y 04$
B. $\lambda=\pi y 02$
C. $\lambda=\pi y 0$
D. $\lambda=2 \pi y 0$

Answer
24. A simple pendulum is released from A as shown. If m and I represent the mass of the bob and length of the pendulum, the gain in kinetic energy at B is

A. mgl 2
B. mgIz

Like.CThegrenBglokmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com

Study, Assignments, Solved Previous Year Papers . Questions and Answers. Free Forever.
25. A tank of height H is fully filled with water. If the water rushing from a hole made in the tank
below the free surface, strikes the floor at maximum horizontal distance, then the depth of the hole from the free surface must be
A. 34 H
B. 23 H
C. 14 H
D. 12 H

Answer

26. The length of a rubber cord is 11 metre when the tension is 4 N and I_{2} metre when the tension is 6 N . The length when the tension is 9 N , is
A. $\left(2.5 \mathrm{I}_{2}-1.5 \mathrm{I}_{1}\right) \mathrm{m}$
B. $\left(6 I_{2}-1.5 I_{1}\right) \mathrm{m}$
C. $\left(3 I_{2}-2 I_{1}\right) m$
D. $\left(3.5 \mathrm{I}_{2}-2.5 \mathrm{I}_{1}\right) \mathrm{m}$

Answer

27. A wire of natural length I, Young's modulus Y and area of cross-section A is extended by x. Then the energy stored in the wire is given by
A. $12 \mathrm{YAl} \times 2$
B. $13 \mathrm{YAI} \times 2$
C. $12 \mathrm{YIA} \times 2$
D. 12 YAl2 x2

Answer

28. A piece of solid weighs 120 g in air, 80 g in water and 60 g in a liquid. The relative density of the solid and that of the liquid are respectively
A. 3, 2
B. 2,34
C. 3,32
D. 4,3

Answer
29. A closed gas cylinder is divided into two parts by a piston held tight. The pressure and volume of gas in two parts respectively are ($\mathrm{p}, 5 \mathrm{~V}$) and (10p, V). If now the piston is left free and the system undergoes isthermal process, then the volume of the gas in two parts respectively are
A. $1011 \mathrm{~V}, 2011 \mathrm{~V}$
B. $3 \mathrm{~V}, 3 \mathrm{~V}$
30. A Carmut entyine with simk's temprature at $17^{\circ} \mathrm{C}$ has 50% effichency. By hrow much should its sourCeuternpessignments, solved Previnus Year Paners iquestions and Answers. Free Forever.
A. 225 K
B. $128^{\circ} \mathrm{C}$
C. 580 K
D. 145 K

Answer
31. Two moles of exygen is mixed with eight moles of helium. The effective specific heat of the mixture at constant volume is
A. 1.3 R
B. 1.4 R
C. 1.7 R
D. 1.9 R

Answer
32. On heating, the temperature at which water has minimum volume is
A. $0^{\circ} \mathrm{C}$
B. $4^{\circ} \mathrm{C}$
C. 4 K
D. $100^{\circ} \mathrm{C}$

Answer
33. In damped oscillations, the amplitude of oscillations is reduced to one-third of its initial value a at the end of 100 oscillations. When the oscillator completes 200 oscillations, its amplitude must be
A. a 02
B. a 06
C. a 09
D. a 04

Answer
34. A particle executes simple harmonic motion with a time period of 16 s . At time $\mathrm{t}=2 \mathrm{~s}$, the particle crosses the mean position while at $t=4 \mathrm{~s}$, its velocity is $4 \mathrm{~ms}^{-1}$. The amplitude of motion in metre is
A. 2π
B. 162π
C. 322π
D. 4π

Answer
35. For a simple pendulum, the graph between $T^{2} L$ and is

Like. S. a straight line passing through the orjgin
C. circte

Studylpsssignments, Solved Previous Year Papers. Questions and Answers. Free Forever.
Answer
36. Charges $+2 q,+q$ and $+q$ are placed at the comers A, B and C of an equilateral triangle $A B C$. If E is the electric field at the circumcentre 0 of the triangle, due to the charge $+q$, then the magnitude and direction of the resultant electric field at O is
A. E along AO
B. 2 E along AO
C. E along BO
D. E along CO

Answer
37. N identical drops of mercury are charged sumultaneously to 10 V . When combined to form one large drop, the potential is found to be 40 V , the value of N is
A. 4
B. 6
C. 8
D. 10

Answer
38. The electrostatic potential energy between proton and electron separated by a distance 1 A 。 is
A. 13.6 V
B. 27.2 eV
C. 14.4 eV
D. 1.44 eV

Answer
39. The plates of a parallel plate capacitor with air as medium are separated by a distance of 8 mm . A medium of dielectric constant 2 and thickness 4 mm having the same area is introduced between the plates. For the capacitance to remain the same, the distance between the plates is
A. 8 mm
B. 6 mm
C. 10 mm
D. 12 mm

Answer
40. The resistance of a wire at room temperature $30^{\sim} \mathrm{C}$ is found to be 10Ω. Now to increase the resistance by 10%, the temperature of the wire must be [The temperature coefficient of resistance of the material of the wire is $0.002 /{ }^{\circ} \mathrm{C}$]
A. $36^{\circ} \mathrm{C}$
B. $83^{\circ} \mathrm{C}$
C. $63^{\circ} \mathrm{C}$

Like.DṢhge.cBookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com
A. 1.25×10^{19}
B. 6.25×10^{20}
C. 5.25×10^{19}
D. 2.55×10^{20}

Answer
42. If R_{1} and R_{2} be the resistances of the filaments of 200 W and 100 W electric bulbs operating at 220 V , then R1R2 is
A. 1
B. 2
C. 0.5
D. 4

Answer
43. A potentiometer wire, 10 m long, has a resistance of 40Ω. It is connected in series with a resistance box and a 2 V storage cell. If the potential gradient along the wire is ($0.1 \mathrm{mV} / \mathrm{cm}$), the resistance unplungged in the box is
A. 260Ω
B. 760Ω
C. 960Ω
D. 1060Ω

Answer
44. When a current I flows through a wire, the drift velocity of the electrons is v . When current 21 flows through another wire of the same material having double the length and double the area of cross-section, the drift velocity of the electrons will be
A. v8
B. v 4
C. v 2
D. V

Answer
45. A uniform electric field and a uniform magnetic field exist in a region in the same direction. An electron is projected with a velocity pointed in the same direction. Then the electron will
A. be deflected to the left without increase in speed
B. be deflected to the right without increase in speed
C. not be deflected but its speed will decrease
D. not be deflected but its speed will increase
46. A galyewreter of resistance 20Ω show Ziretection of 10 div sion when a curoent of 1 mA is passed through it. If a strumt of 4Ω is connected and there are 50 divisiom णा the scale, thre rangestyfyensignments Seleqlyed Previous Year Papers. Questions and Answers. Free Forever.
A. 1 A
B. 3 A
C. 30 mA
D. 30 A

Answer

47. A conducting rod of 1 m length and 1 kg mass is suspended by two vertical wires through its ends. An external magnetic field of 2 T is applied normal to the rod. Now the current to be passed through the rod so as to make the tension in the wires zero is [Take $\mathrm{g}=10 \mathrm{~ms}^{-2}$]
A. 0.5 A
B. 15 A
C. 5 A
D. 1.5 A

Answer

48. A circular coil of 5 turns and of 10 cm mean diameter is connected to a voltage source. If the resistance of the coil is 10Ω, the voltage of the source so as to nullify the horizontal component of earth's magnetic field of 30 A turn m^{-1} at the centre of the coil should be
A. 6 V , plane of the coil normal to magnetic meridian
B. 2 V , plane of the coil normal to magnetic meridian
C. 6 V , plane of the coil along the magnetic meridian
D. 2 V , plane of the coil along the magnetic meridian

Answer
49. A paramagnetic substance of susceptibility 3×10^{-4} is placed in a magnetic field of $4 \times 10 \mathrm{Am}^{-1}$. Then the intensity of magnetization in the units of Am^{-1} is
A. 1.33×10^{8}
B. 0.75×10^{-8}
C. 12×10^{-8}
D. 14×10^{-8} Answer
50. A square coil of side 25 cm having 1000 turns is rotated with a uniform speed in a magnetic field about an axis perpendicular to the direction of the field. At an instant t, the emf induced in the coil is $\mathrm{e}=200 \sin 100 \pi \mathrm{t}$. The magnetic induction is
A. 0.50 T
B. 0.02 T

Like. Share. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com

secondary voltage is 250 V , the primary and secondary currents are respectively
A. $25 \mathrm{~A}, 20 \mathrm{~A}$
B. $20 \mathrm{~A}, 16 \mathrm{~A}$
C. $25 \mathrm{~A}, 16 \mathrm{~A}$
D. $40 \mathrm{~A}, 25 \mathrm{~A}$

Answer
52. When a DC voltage of 200 V is applied to a coil of self-inductance $23 \pi \mathrm{H}$, a current of 1 A flows through it. But by replacing DC source with AC source of 200 V , the current in the coil is reduced to 0.5 A . Then the frequency of $A C$ supply is
A. 100 Hz
B. 75 Hz
C. 50 Hz
D. 30 Hz Answer
53. In a L-R circuit, the value of L is $0.4 \pi \mathrm{H}$ and the value of R is 30Ω. If in the circuit, an alternating emf of 200 V at 30 cycles/s is connected, the impedance of the circuit and current will be
A. $11.4 \Omega, 17.5 \mathrm{~A}$
B. $30.7 \Omega, 6.5 \mathrm{~A}$
C. $40.4 \Omega, 5 \mathrm{~A}$
D. $50 \Omega, 4 \mathrm{~A}$ Answer
54. The dielectric constant of air is 1.006 . The speed of electromagnetic wave travelling in air is a x $10^{8} \mathrm{~ms}^{-1}$, where a is about
A. 3
B. 3.88
C. 2.5
D. 3.2

Answer

1. The wavelength of microwaves is greater than that of UV-rays.
2. The wavelength of IR rays is lesser than that of UV-rays.
3. The wavelength of microwaves is lesser than that of IR rays.
4. Gamma rays have shortest wavelength in the electromagnetic spectrum. Of the above statements
A. A and B are true
B. B and C are true
C. A and D are true

Like. Share. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com
 cm is
A. 2
B. 4
C. 5
D. 6

Answer
57. The position of final image formed by the given lens combination from the third lens will be at a distance of ($\mathrm{f}_{1}=+10 \mathrm{~cm}, \mathrm{f}_{2}=-10 \mathrm{~cm}, \mathrm{f}_{3}=+30 \mathrm{~cm}$)

A. 15 cm
B. infinity
C. 45 cm
D. 30 cm

Answer
58. A slit of width a is illuminated by red light of wavelength 6500 A 。. If the first minimum falls at θ $=30^{\circ}$, the value of a is
A. $6.5 \times 10^{-4} \mathrm{~mm}$
B. 1.3 micron
C. 3250 A 。
D. $2.6 \times 10^{-4} \mathrm{~cm}$

Answer
59. Two beams of light of intensity I_{1} and I_{2} interfere to give an interference pattern. If the ratio of maximum intensity to that of minimum intensity is 259 , then 1112 is
A. 53
B. 4
C. 81625
D. 16
60. If the polarizing angle of a piece of glass for greep light is 54.74° then the angle of minimum Like. Share. Bookmark. Downibad. Make Notes. Srint - Yout Favourite Questions. Join www.zigya.com

Bturdy, Asssignments, Solved Previous Year Papers. Questions and Answers. Free Forever.
C. 30°
D. 90°

Answer
61. When a monochromatic point source of light is at a distance 0.2 m from a photoelectric cell, the saturation current and cut-off voltage are 12.0 mA and 0.5 V . If the same source is placed 0.4 m away from the photoelectric cell, then the saturation current and the stopping potential respectively are
A. 4 mA and 1 V
B. 12 mA and 1 V
C. 3 mA and 0.5 V
D. 12 mA and 0.5 V

Answer
62. Consider the nuclear reaction $X^{200} \rightarrow A^{110}+B^{80}$, If the binding energy per nucleon for X, A and B are $7.4 \mathrm{MeV}, 8.2 \mathrm{MeV}$ and 8.1 MeV respectively, then the energy released in the reaction is
A. 70 MeV
B. 200 MeV
C. 190 MeV
D. 10 MeV

Answer
63. The natural boron of atomic weight 10.81 is found to have two isotopes B^{10} and B^{11}. The ratio of abundance of isotopes in natural boron should be
A. 11: 10
B. $81: 19$
C. 19: 81
D. 15: 16

Answer
64. Radium has a half-life of 5 yr . The probability of decay of a radium nucleus in 10 yr is
A. 50%
B. 75%
C. 100%
D. 60%

Answer
65. When the forward bias voltage of a diode is changed from 0.6 V to 0.7 V , the current changes from 5 mA to 15 mA . Then its forward bias resistance is
A. 0.01Ω

Like. Share. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com

Answeludy, Assignments, Solved Previous Year Papers. Questions and Answers. Free Forever.
66. In common emitter amplifier, the current gain is 62. The collector resistance and input resistance are $5 \mathrm{k} \Omega$ and 500Ω respectively. If the input voltage is 0.1 V , the output voltage is
A. 0.61 V
B. 6.2 V
C. 62 V
D. 620 V

Answer
67. The current gain of a transistor in common base mode is 0.995 . The current gain of the same transistor in common emitter mode is
A. 197
B. 201
C. 199
D. 202

Answer
68. The real time variation of input signals A and B are as shown below. If the inputs are fed into NAND gate, then select the output signal from the following

A.

Like. Share. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com

Physics	
JEEA2007	ZIgya
2007	

Study Assignment:, So ved Previous Year Papers. Questions and Answers. Free Forever.
C.

D.

Answer
69. The time variations of signals are given as in A, B and C . Point out the true statement from the following

(A)

(B)

(C)
A. A, B and C are analogue signals
B. A and B are analogue, but C is digital signal
C. A and C digital, but B is analogue signal
kikewehare. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com
70. The optezatóms have an inner core of
zigye cladding of refragtive index n_{2}
such that
Study, Assignments, Solved Previous Year Papers. Questions and Answers. Free Forever.
A. $\mathrm{n}_{1}=\mathrm{n}_{2}$
B. $\mathrm{n}_{1} \leq \mathrm{n}_{2}$
C. $\mathrm{n}_{1}<\mathrm{n}_{2}$
D. $\mathrm{n}_{1}>\mathrm{n}_{2}$

Answer
71. A photodetector used to detect the wavelength of 1700 nm , has energy gap of about
A. 0.073 eV
B. 1.2 eV
C. 0.73 eV
D. 1.16 eV

Answer
72. The energy gap between conduction band and the valence band is of the order of 0.7 eV . Then it is
A. an insulator
B. a conductor
C. a semiconductor
D. an alloy

Answer

