www.zigya.com

Previous Year Paper

Physics - 2009

: \equiv Multiple Choice Questions

1. The percentage errors in the measurement of length and time period of a simple pendulum are 1% and 2% respectively. Then the maximum error in the measurement of acceleration due to gravity is
A. 8%
B. 3%
C. 5%
D. 6%

Answer
2. Dimensional formula of Stefan's constant is
A. $\left[\mathrm{MT}^{-3} \mathrm{~K}^{-4}\right]$
B. $\left[\mathrm{MLT}^{-2} \mathrm{~K}^{-4}\right]$
C. $\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$
D. $\left[M T^{-2} L^{0}\right]$

Answer
3. A body is falling freely under gravity. The distances covered by the body in first, second and third minute of its motion are in the ratio
A. $1: 4: 9$
B. $1: 2: 3$
C. $1: 3: 5$
D. $1: 5: 6$

Answer
4. A bullet fired into a fixed wooden block loses half of its velocity after penetrating 40 cm . It comes to rest after penetrating a further distance of
A. 223 cm
B. 403 cm
C. 203 cm
D. 225 cm

Answer
5. A ball A is thrown up vertically with a speed u and at the same instant another ball B is released from a height h. At time t, the speed of A relative to B is

AnswStudy, Assignments, Solved Previous Year Papers. Questions and Answers. Free Forever.
6. A bullet is to be fired with a speed of $2000 \mathrm{~ms}^{-1}$ to hit a target 200 m away on a level ground. If g $=10 \mathrm{~ms}^{-2}$, the gun should be aimed
A. directly at the target
B. 5 cm below the target
C. 5 cm above the target
D. 2 cm above the target

Answer

7. The resultant of two vectors $P \rightarrow$ and $Q \rightarrow$ is $R \rightarrow$. If the magnitude of $Q \rightarrow$ is doubled, the new resultant becomes perpendicular to $P \rightarrow$. Then the magnitude of $R \rightarrow$ is
A. $P+Q$
B. Q
C. P
D. $P+Q 2$

Answer
8. A motor car is moving with a speed of $20 \mathrm{~ms}^{-1}$ on a circular track of radius 100 m . If its speed is increasing at the, rate of $3 \mathrm{~ms}^{-1}$, its resultant acceleration is
A. $3 \mathrm{~ms}^{-2}$
B. $5 \mathrm{~ms}^{-2}$
C. $2.5 \mathrm{~ms}^{-2}$
D. $3.5 \mathrm{~ms}^{-2}$

Answer
9. A stationary body of mass 3 kg explodes into three equal pieces. Two of the pieces fly off in two mutually perpendicular directions, one with a velocity of $3 \mathrm{i}^{\wedge} \mathrm{ms}^{-1}$ and the other with a velocity of $4 \mathrm{j}^{\wedge} \mathrm{ms}^{-1}$. If the explosion occurs in $10^{-4} \mathrm{~s}$, the average force acting on the third piece in newton is
A. $3 \mathrm{i}^{\wedge}+4 \mathrm{j}^{\wedge} \times 10-4$
B. $3 i^{\wedge}-4 j^{\wedge} \times 10-4$
C. $3 i^{\wedge}+4 j^{\wedge} \times 104$
D. $-3 i^{\wedge}+4 j^{\wedge} \times 104$

Answer
10. A mass of 1 kg is just able to slide down the slope of an inclined rough surface when the angle of inclination is 60°. The minimum force necessary to pull the mass up the inclined plane ($\mathrm{g}=10$

Physics BJEE. 22009	ZIgya		
C. 10 N		\quad	Exam Year
:---:			
2009			

Stupdy, 6 Assignnments, Solved Previous Year Papers . Questions and Answers. Free Forever.
Answer
11. A block of mass m is resting on a smooth horizontal surface. One end of a uniform rope of mass m3 is fixed to the block, which is pulled in the horizontal direction by applying force F at the other end. The tension in the middle of the rope is
A. 87 F
B. 17 F
C. 78 F
D. 15 F

Answer
12. A particle is acted upon by a force F which varies with position x as shown in figure. If the particle at $x=0$ has kinetic energy of 25 J , then the kinetic energy of the particle at $\mathrm{x}=16 \mathrm{~m}$ is

A. 45 J
B. 30 J
C. 70 J
D. 135 J

Answer
13. Two springs P and Q of force constants k_{p} and $k_{Q} k Q=k p 2$ are stretched by applying forces of equal magnitude. If the energy stored in Q is E , then the energy stored in P is
A. E
B. 2 E
C. E2
D. E4

Answer
14. A rod of mass m and length I is made to stand at an angle of 60° with the vertical. Potential energy of the rod in this position is
A. mgl
B. mgl 2
C. mgl 3

Like. Share. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com

The moment of inertia of the remaining part of the ring about an axis passing through the centre of the ring and perpendicular to the plane of the ring is k times $M R^{2}$. Then the value of k is
A. 34
B. 78
C. 14
D. 1

Answer
16. A system consists of 3 particles each of mass m located at points $(1,1),(2,2)$ and $(3,3)$. The coordinates of the centre of mass are
A. $(6,6)$
B. $(3,3)$
C. $(1,1)$
D. $(2,2)$

Answer
17. A wheel of moment of inertia $2.5 \mathrm{~kg}-\mathrm{m}^{2}$ has an initial angular velocity of $40 \mathrm{rads}^{-1}$. A constant torque of 10 Nm acts on the wheel. The time during which the wheel is accelerated to $60 \mathrm{rads}^{-1}$ is
A. 4 s
B. 6 s
C. 5 s
D. 2.5 s

Answer
18. The ratio of radii of earth to another planet is 23 and the ratio of their mean densities is 45 . If an astronaut can jump to a maximum height of 1.5 m on the earth, with the same effort, the maximum height he can jump on the planet is
A. 1 m
B. 0.8 m
C. 0.5 m
D. 1.25 m

Answer
19. If an object of mass mis taken from the surface of earth (radius R) to a height $2 R$, then the work done is
A. 2 mgR
B. $m g R$
20. At what depth betow the surface of the earth, the value of g is the same as that at a treightion 5 km ?Study, Assignments, Solved Previous Year Papers. Questions and Answers. Free Forever.
A. 1.25 km
B. 2.5 km
C. 10 km
D. 7.5 km

Answer
21. A particle of mass m carrying charge q is kept at rest in a uniform electric field E and then released. The kinetic energy gained by the particle, when it moves through a distance y is
A. 12 qEy 2
B. qEy
C. qEy^{2}
D. $q E^{2} y$

Answer
22. A small spherical ball falling through a viscous medium of negligible density has terminal velocity v. Another ball of the same mass but of radius twice that of the earlier falling through the same viscous medium will have terminal velocity
A. V
B. $\mathrm{v} / 4$
C. $\mathrm{v} / 2$
D. 2 v

Answer
23. The excess pressure inside a spherical drop of water is four times that of another drop. Then their respective mass ratio is
A. $1: 16$
B. $8: 1$
C. 1:4
D. $1: 64$

Answer
24. In a capillary rise experiment, the water level rises to a height of 5 cm . If the same capillary tube is placed in water such that only 3 cm of the tube projects outside the water level, then
A. water will begin to overflow through the capillary
B. angle of contact decreases
C. angle of contact increases
D. the meniscus completely vanishes

Answer

Sturty, Assignments, Solved Previous Year Papers. Questions and Answers. Free Forever.

```
C. 2\times10
```

D. 2×10^{8}

Answer
26. The change in internal energy of a given mass of gas, when its volume changes from V to 2 V at constant pressure p is $C p C V=\gamma$, universal gas constant $=R$
A. $\mathrm{p} V \gamma$
B. $\mathrm{p} V 2 \mathrm{y}-1$
C. $\mathrm{p} V \mathrm{y}-1$
D. $\mathrm{R} \gamma-1$

Answer
27. In a Carnot engine, the temperature of reservoir is $927^{\circ} \mathrm{C}$ and that of sink is $27^{\circ} \mathrm{C}$. If the work done by the engine when it transfers heat from reservoir to sink is $12.6 \times 10^{6} \mathrm{~J}$, the quantity of heat absorbed by the engine from the reservoir is
A. $16.8 \times 10^{6} \mathrm{~J}$
B. 4×10^{6} J
C. 7.6×10^{6} J
D. $4.25 \times 10^{6} \mathrm{~J}$

Answer
28. In the given $\mathrm{p}-\mathrm{V}$ diagram, I is the initial state and F is the final state.

The gas goes from I to F by
(i) IAF
(ii) IBF
(iii) ICF

The heat absorbed by gas is
A. the same in all three processes
B. the same in (i) and (ii)
C. greater in (i) than in (ii)
D. the same in (i) and (iii)

Answer

Physics tempgremereofghe surroundings is ZIgyo	Exam Year 2009

Btudgy Assignments, Solved Previous Year Papers. Questions and Answers. Free Forever.
C. $15^{\circ} \mathrm{C}$
D. $20^{\circ} \mathrm{C}$

Answer
30. In a sinusoidal wave, the time required for a particular point to move from maximum displacement to zero displacement is 0.14 s . The frequencv of the wave is
A. 0.42 Hz
B. 2.75 Hz
C. 1.79 Hz
D. 0.56 Hz

Answer
31. An electric motor of mass 40 kg is mounted on four vertical springs each having a spring constant of $4000 \mathrm{Nm}^{-1}$. The period with which the motor vibrates vertically is
A. 0.314 s
B. 3.14 s
C. 0.628 s
D. 0.157 s

Answer
32. Two simple harmonic motions are represented by $y 1=4 \sin (4 \pi t+\pi / 2)$ and $y 2=3 \cos 4 \pi t$. The resultant amplitude is
A. 7
B. 1
C. 5
D. $2+3$

Answer
33. An observer is approaching a stationary source with a velocity 14th of the velocity of sound. Then the ratio of the apparent frequency to actual frequency of source is
A. $4: 5$
B. $5: 4$
C. $2: 3$
D. $3: 2$

Answer
34. When a wave travels in a medium, the particle displacement is given by the equation $y=a \sin 2 \pi b t-c x$ where a, b and c are constants. The maximum particle velocity will be twice the wave velocity, if
A. $c=1 \pi а$
B. $c=\pi a$

Like. Share. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com

Answetudy, Assignments, Solved Previous Year Papers. Questions and Answers. Free Forever.
35. A progressive wave $y=A \sin k x-\omega t$ is reflected by a rigid wall at $x=0$. Then the reflected wave can be represented by
A. $y=A \sin (k x+\omega t)$
B. $y=A \cos (k x+\omega t)$
C. $y=-A \sin (k x-\omega t)$
D. $y=-A \sin (k x+\omega t)$

Answer
36. A heater of 220 V heats a volume of water in 5 min . The same heater when connected to 110 V heats the same volume of water in (minute)
A. 5
B. 20
C. 10
D. 2.5

Answer
37. Which one of the following graphs represents the variation of electric field with distance r from the centre of a charged spherical conductor of radius R ?

A.
$r=R$

B.

$$
r=R
$$

Physics	
JEE2009	ZIgya

Study, Assignments, Solved Previous Year Papers. Questions and Answers. Free Forever.
C. $\quad r=R$

Answer
38. Two conducting spheres A and B of radius a and b respectively are at the same potential. The ratio of the surface charge densities of A and B is
A. ba
B. $a b$
C. a 2 b 2
D. b 2 a 2

Answer
39. Three charges $2 q,-q,-q$ are located at the vertices of an equilateral triangle. At the circumcentre of the triangle
A. the field is zero but potential is non-zero
B. potential is zero and the field is infinity
C. the field is non-zero but potential is zero
D. both the field and potential are non-zero Answer
40. $\mathrm{C}, \mathrm{V}, \mathrm{U}$ and Q are capacitance, potential difference, energy stored and charge of a parallel plate capacitor respectively. The quantities that increase when a dielectric slab is introduced between the plates without disconnecting the battery are
A. V and C
B. V and U
C. U and Q
D. V and Q

Answer

| Physics
 A.JEE 2009
 B. 27.32 | ZIgya |
| :---: | :---: | | Exam Year |
| :---: |
| 2009 |

Studdy, Assignments, Solved Previous Year Papers. Questions and Answers. Free Forever.
D. $27: 128$

Answer
42. Two different conductors have same resistance at $0^{\circ} \mathrm{C}$. It is found that the resistance of the first conductor at $\mathrm{t}_{1}{ }^{\circ} \mathrm{C}$ is equal to the resistance of the second conductor at $\mathrm{t}_{2}{ }^{\circ} \mathrm{C}$. The ratio of the temperature coefficients of resistance of the conductors, $\alpha 1 \alpha 2$ is
A. t1t2
B. $\mathrm{t} 2-\mathrm{t} 1 \mathrm{t} 2$
C. t 2 - t 1 t 1
D. t 2 t 1

Answer
43. In the given circuit diagram the current through the battery and the charge on the capacitor respectively in steady state are

A. 1 A and $3 \mu \mathrm{C}$
B. 17 A and $0 \mu \mathrm{C}$
C. 11 A and $3 \mu \mathrm{C}$
D. 6 A and $0 \mu \mathrm{C}$

Answer
44. A potentiometer wire of length 10 m and resistance 20Ω is connected in series with a 15 V battery and an external resistance 40Ω. A secondary cell of emf E in the secondary circuit is balanced by 240 cm long potentiometer wire. The emf E of the cell is
A. 2.4 V
B. 1.2 V
C. 2.0 V
D. 3 V

Answer
45. A current I enters a circular coil of radius R, branches into two parts and then recombines as

Like. Share. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com

The resultant magnetic field at the centre of the coil is
A. zero
B. $\mu 012 \mathrm{R}$
C. $34 \mu 012 \mathrm{R}$
D. $14 \mu 012 \mathrm{R}$

Answer
46. The resistance of a galvanometer is 50Ω and it shows full scale deflection for a current of 1 mA . To convert it into a voltmeter to measure 1 V and as well as 10 V (Refer circuit diagram) the resistances R_{1} and R_{2} respectively are

A. 950Ω and 9150Ω
B. 900Ω and 9950Ω
C. 900Ω and 9900Ω
D. 950Ω and 9000Ω

Answer
47. Two long parallel wires carry currents i_{1} and i_{2} such that $i_{1}>i_{2}$. When the currents are in the same direction, the magnetic field at a point midway between the wires is $6 \times 10^{-6} \mathrm{~T}$. If the direction of i_{2} is reversed, the field becomes $3 \times 10^{-5} \mathrm{~T}$. The ratio i 1 i 2 is
A. 12
B. 2
C. 23
D. 32

Answer
48. A coil of 100 turns and area $2 \times 10^{-2} \mathrm{~m}^{2}$, pivoted about a vertical diameter in a uniform magnetic field carries a current of 5A. When the coil is held with its plane in North-South direction, it

Stud. V_{5} Asssignments, Solved Previous Year Papers . Questions and Answers. Free Forever.
D. 0.1 T

Answer
49. The angle of dip at a place is 37° and the vertical component of the earth's magnetic field is $6 x$ $10^{-5} \mathrm{~T}$. The earth's magnetic field at this place is $\left(\tan 37^{\circ}=3 / 4\right)$
A. $7 \times 10^{-5} \mathrm{~T}$
B. $6 \times 10^{-5} \mathrm{~T}$
C. $5 \times 10^{-5} \mathrm{~T}$
D. $10^{-4} \mathrm{~T}$

Answer
50. The impedance of a $R-C$ circuit is Z_{1} for frequency f and Z_{2} for frequency $2 f$. Then Z_{1} / Z_{2} is
A. between 1 and 2
B. 2
C. 2 between 12 and 1
D. 12

Answer
51. In an L-C-R series $A C$ circuit the voltage across L, C and R is 10 V each. If the inductor is short circuited, the voltage across the capacitor would become
A. 10 V
B. 202 V
C. 202 V
D. 102 V

Answer
52. A transformer of efficiency 90% draws an input power of 4 kW . An electrical appliance connected across the secondary draws a current of 6 A . The impedance of the device is
A. 60Ω
B. 50Ω
C. 80Ω
D. 100Ω

Answer
53. The inductance of a coil in which a current of 0.1 A increasing at the rate of $0.5 \mathrm{As}^{-1}$ represents a power flow of 12 W , is
A. 2 H
B. 8 H
A. 500
B. 100
C. 5003
D. 2503

Answer
55. In the following circuit, the current flowing through $1 \mathrm{k} \Omega$ resistor is

A. 0 mA
B. 5 mA
C. 10 mA
D. 15 mA

Answer
56. Electromagnetic waves of frequencies higher than 92 MHz are found to be reflected by the ionosphere on a particular day at a place. The maximum electron density in the ionosphere is
A. $5 \times 1012 \mathrm{~m}-3$
B. $2 \times 1012 \mathrm{~m}-3$
C. $2 \times 10^{12} \mathrm{~m}^{-3}$
D. $5 \times 10^{12} \mathrm{~m}^{-3}$

Answer
57. Which one of the following statements is wrong ?
A. Radio waves in the frequency range 30 MHz to 60 MHz are called sky waves.
B. Radio horizon of the transmitting antenna for space wave is dT $=2 \mathrm{RhT}$ ($\mathrm{R}=$ radius of earth, $h_{T}=$ height of transmitting antenna)
C. Within the skip distance neither the ground waves nor the sky waves are received
D. The principle of fibre optical communication is total internal reflection

Answer
58. The refractive index and the permeability of a medium are respectively 1.5 and $5 \times 10^{-7} \mathrm{Hm}^{-1}$. The relative permittivity of the medium is nearly

Like. ${ }^{\text {B Shalfe. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com }}$

Answetudy, Assignments, Solved Previous Year Papers. Questions and Answers. Free Forever.
59. A square wire of side 1 cm is placed perpendicular to the principal axis of a concave mirror of focal length 15 cm at a distance of 20 cm . The area enclosed by the image of the wire is
A. $4 \mathrm{~cm}^{2}$
B. $6 \mathrm{~cm}^{2}$
C. $9 \mathrm{~cm}^{2}$
D. $8 \mathrm{~cm}^{2}$

Answer
60. A thin prism P of refracting angle 3° and refractive index 1.5 is combined with another thin prism Q of refractive index 1.6 to produce dispersion without deviation. Then the angle of prism Q is
A. 3°
B. 4°
C. 3.5°
D. 2.5°

Answer
61. Light of wavelength $6000 \mathrm{~A} \circ$ falls on a single slit of width 0.1 mm . The second minimum will be formed for the angle of diffraction of
A. 0.08 rad
B. 0.06 rad
C. 0.012 rad
D. 0.15 rad

Answer

62. In a double slit experiment, the screen is placed at a distance of 1.25 m from the slits. When the apparatus is immersed in water ($\mu_{\mathrm{w}}=4 / 3$), the angular width of a fringe is found to be 0.2°. When the experiment is performed in air with same set up, the angular width of the fringe is
A. 0.4°
B. 0.27°
C. 0.35°
D. 0.15°

Answer

63. Two piano-concave lenses (1 and 2) of glass of refractive index 1.5 have radii of curvature 25 cm and 20 cm . They are placed in contact with their curved surfaces towards each other and the space between them is filled with liquid of refractive index 43. Then the combination is

Physics	
ZIgyo	Exam Year 2009

Stud
A. convex of focal length 70 cm
B. concave of focal length 70 cm
C. concave of focal length 66.6 cm
D. convex of focal length 66.6 cm

Answer
64. When a metallic surface is illuminated by a light of wavelength λ, the stopping potential for the photoelectric current is 3 V . When the same surface is illuminated by light of wavelength 2λ, the stopping potential is 1 V , the threshold wavelength for this surface is
A. 4λ
B. 3.5λ
C. 3λ
D. 2.75λ

Answer
65. The temperature at which protons in proton gas would have enough energy to overcome Coulomb barrier of $4.14 \times 10^{-14} \mathrm{~J}$ is (Boltzmann constant $=1.38 \times 10^{-23} \mathrm{JK}^{-1}$)
A. $2 \times 10^{9} \mathrm{~K}$
B. $10^{9} \mathrm{~K}$
C. $6 \times 10^{9} \mathrm{~K}$
D. $3 \times 10^{9} \mathrm{~K}$

Answer
66. The activity of a radioactive element decreases to one-third of the original activity A_{0} in a period of 9 yr . After a further lapes of 9 yr , its activity will be
A. A_{0}
B. 23 A 0
C. A09
D. A 06

Answer
67. Two nucleons are at a separation of 1 fermi. The net force between them is F_{1} if both are neutrons, F_{2} if both are protons and F_{3} if one is proton and the other is a neutron. Then
A. $F_{1}>F_{2}>F_{3}$
B. $F_{1}=F_{3}>F_{2}$
60. The truthrtatole for the following logic circuit is

Study, Assignments colved Previous Year Papers. Questions and Answers. Free Forever.

A. ABY000011101110
B. ABY000011101111
C. ABY001010101110
D. ABY001011100111

Answer
69. In the operation of $n-p-n$ transistor compared to that of a triode, the p base acts as
A. emitter
B. cathode
C. grid
D. plate

Answer
70. In the diagram, the input $A C$ is across the terminals A and C. The output across B and D is

A. same as the input
B. half wave rectified
C. zero
D. full wave rectified

Answer
71. A diode $A M$ detector with the output circuit consisting of $R=1 \mathrm{k} \Omega$ and $C=1 \mu \mathrm{~F}$ would be more suitable for detecting a carrier signal of
A. 0.1 kHz
B. 0.5 kHz
C. 10 kHz
D. 0.75 kHz
hikewshare. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com
72. In optiEE 200gunication system operat 2ita souzoogequency is
 be trathlinytesciqsments, Solved Previous Year Papers. Questions and Answers. Free Forever.
A. 2 million
B. 10 million
C. 0.1 million
D. 1 million

Answer

