www.zigya.com

Previous Year Paper

Physics - 2016

: 三 Multiple Choice Questions

1. A body falls freely for 10 s . Its average velocity during this journey is (Take, $\mathrm{g}=10 \mathrm{~ms}^{-2}$)
A. $100 \mathrm{~ms}^{-1}$
B. $10 \mathrm{~ms}^{-1}$
C. $50 \mathrm{~ms}^{-1}$
D. $5 \mathrm{~ms}^{-1}$

Answer
2. Three projectiles A, B and C are projected at an angle of $30^{\circ}, 45^{\circ}, 60^{\circ}$ respectively. If R_{A}, R_{B} and R_{C} are ranges of A, B and C respectively, then (velocity of projection is same for A, B and C)
A. $R_{A}=R_{B}=R_{C}$
B. $R_{A}=R_{C}>R_{B}$
C. $R_{A}<R_{B}<R_{C}$
D. $R_{A}=R_{C}<R_{B}$

Answer
3. The component ofa vector r along X-axis will have a maximum value, if
A. r is along positive X-axis
B. r is along positive Y-axis
C. r is along negative Y-axis
D. r makes an angle of 45° with the X-axis

Answer
4. Maximum acceleration of the train in which a 50 kg box lying on its floor will remain stationary (Given, coefficient of static friction between the box and the train's floor is 0.3 and $\mathrm{g} \mathrm{=} 10 \mathrm{~ms}^{-2}$)
A. $5.0 \mathrm{~ms}^{-2}$
B. $3.0 \mathrm{~ms}^{-2}$
C. $1.5 \mathrm{~ms}^{-2}$
D. $15 \mathrm{~ms}^{-2}$

Answer
5. A 12 kg bomb at rest explodes into two pieces of 4 kg and 8 kg . If the momentum of 4 kg piece is 20 Ns , the kinetic energy of the 8 kg piece is

Answetudy, Assignments, Solved Previous Year Papers. Questions and Answers. Free Forever.
6. Which of the points is likely position of the centre of mass of the system shown in the figure ?

A. A
B. D
C. B
D. C

Answer
7. Three bodies a ring (R), a solid cylinder (C) and a solid sphere (S) having same mass and same radius roll down the inclined plane without slipping. They start from rest, if V_{R}, v_{C} and v_{S} are velocities of respective bodies on reaching the bottom of the plane, then
A. $\mathrm{v}_{\mathrm{R}}=\mathrm{v}_{\mathrm{C}}=\mathrm{v}_{\mathrm{S}}$
B. $\mathrm{V}_{\mathrm{R}}>\mathrm{v}_{\mathrm{C}}>\mathrm{v}_{\mathrm{S}}$
C. $\mathrm{v}_{\mathrm{R}}<\mathrm{v}_{\mathrm{C}}<\mathrm{v}_{\mathrm{S}}$
D. $\mathrm{V}_{\mathrm{R}}=\mathrm{v}_{\mathrm{C}}>\mathrm{v}_{\mathrm{S}}$

Answer
8. Variation of acceleration due to gravity (g) with distance x from the centre of the Earth is best represented by ($R \rightarrow$ Radius of the Earth)
A.

B.

C.

Like.DShare. BOokmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com
9. A sprimg is stretched by applying a load to its free end. The strainproduced im the spming is A. Adyunssignments, Solved Previous Year Papers . Questions and Answers. Free Forever.
B. shear
C. Iongitudinal and shear
D. Iongitudinal

Answer
10. An ideal fluid flows through a pipe of circular cross-section with diameters 5 cm and 10 cm as shown in the figure. The ratio of velocities of fluid at A and B is

A. $4: 1$
B. $1: 4$
C. 2:1
D. $1: 2$

Answer
11. A pan filled with hot food cools from $94^{\circ} \mathrm{C}$ to $86^{\circ} \mathrm{C}$ in 2 min . When the room temperature is $20^{\circ} \mathrm{C}$. Howl ong will it cool from $74^{\circ} \mathrm{C}$ to $66^{\circ} \mathrm{C}$?
A. 2 min
B. 2.8 min
C. 2.5 min
D. 1.8 min

Answer
12. Four rods of same material with different radii r and length I are used to connect two heat reservoirs at different temperature. Which one will conduct most heat ?
A. $r=1 \mathrm{~cm}, \mid=1 \mathrm{~m}$
B. $\mathrm{r}=1 \mathrm{~cm}, \mathrm{I}=12 \mathrm{~m}$
C. $r=2 \mathrm{~cm}, \mathrm{I}=2 \mathrm{~m}$
D. $r=2 \mathrm{~cm}, \mathrm{I}=12 \mathrm{~m}$

Answer
13. A Carnot engine working between 300 K and 400 K has 800 J of useful work. The amount of heat energy supplied to the engine from the source is
A. 2400 J
B. 3200 J
C. 1200 J
D. 3600 J

Answer
14. A particle executing SHM has a maximum speed of $0.5 \mathrm{~ms}^{-1}$ and maximum acceleration of 1.0 Like. Share. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com
ms^{-2}. JEE 2 hgular frequency of oscillation ZIS

Exam Year
2016

B. U.5 rad s
C. $2 \pi \mathrm{rad} \mathrm{s}-1$
D. $0.5 \pi \mathrm{rad} \mathrm{s}-1$

Answer
15. A source of sound is moving with a velocity of $50 \mathrm{~ms}^{-1}$ towards a stationary observer. The observer measures the frequency of sound as 500 Hz . The apparent frequency of sound as heard by the observer when source is moving away from him with the same speed is (Speed of sound at room temperature is $350 \mathrm{~ms}^{-1}$)
A. 400 Hz
B. 666 Hz
C. 375 Hz
D. 177.5 Hz

Answer
16. If there are only one type of charge in the universe, then ($E \rightarrow$ Electric field, $d S \rightarrow$ Area vector)
A. $\oint E d S \neq 0$ on any surface
B. $\oint E \mathrm{dS}$ could not be defined
C. $\oint E d S=\infty$ if charge is inside
D. $\oint E d S=0$ if charge is outside, $=q \varepsilon 0$ if charge is inside Answer
17. An electron of mass m, charge e falls through a distance h metre in a uniform electric field E. Then, time of fall
A. $t=2 \mathrm{hmeE}$
B. $t=2 \mathrm{hmeE}$
C. $t=2 e E h m$
D. $\mathrm{t}=2 \mathrm{e} \mathrm{Ehm}$

Answer
18. If E_{ax} and $\mathrm{E}_{\text {eq }}$ represents electric field at a point on the axial and equatorial line of a dipole. If points are at a distance r from the centre of the dipole, for $r \gg a$
A. $E_{a x}=E_{\text {eq }}$
B. $\mathrm{E}_{\mathrm{ax}}=-\mathrm{E}_{\mathrm{eq}}$
C. $E_{\text {ax }}=-2 E_{\text {eq }}$
D. $E_{e q}=2 E_{a x}$

Answer
19. Nature of equipotential surface for a point charge is

Answfef Sy, Assignments, Solved Previous Year Papers . Questions and Answers. Free Forever.
20. A particle of mass 1 g and charge $1 \mu \mathrm{C}$ is held at rest on a frictionless horizontal surface at distance 1 m from the fixed charge 2 mC . If the particle is released, it will be repelled. The speed of the particle when it is at a distance of 10 m from the fixed charge.
A. $60 \mathrm{~ms}^{-1}$
B. $100 \mathrm{~ms}^{-1}$
C. $90 \mathrm{~ms}^{-1}$
D. $180 \mathrm{~ms}^{-1}$

Answer
21. A capacitor of 8 Fis connected as shown in the figure. Charge on the plates of the capacitor

A. 32 C
B. 40 C
C. 0 C
D. 80 C

Answer
22. Four metal plates are arranged as shown in the figure. Capacitance between X and $Y(A \rightarrow$ Area of each plate, $d \rightarrow$ distance between the plates) is

A. 32 ع0Ad
B. $2 \varepsilon 0 \mathrm{Ad}$
C. 23 ع0Ad
D. $3 \varepsilon 0 \mathrm{Ad}$

Answer
23. Mobility of free electrons in a conductor is
A. directly proportional to electron density
B. directly proportional to relaxation time

Like. Share. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com
D. iाiversely poportional to relaxation time

Answetudy, Assignments, Solved Previous Year Papers. Questions and Answers. Free Forever.
24. Variation of resistance of the conductor with temperature is as shown

The temperature coefficient (α) of the conductor is
A. ROm
B. $m R_{0}$
C. $m^{2} R$
D. mRO

Answer
25. Potential difference between A and B in the following circuit

A. 4 V
B. 5.6 V
C. 2.8 V
D. 6 V

Answer
26. In the following network, potential at O is

A. 4 V
B. 3 V
C. 6 V

Physics 27. Effectjeer revisg	A and B in 7asgona ing circuit	$\begin{gathered} \text { Exam Year } \\ 2016 \end{gathered}$

Study, Assiyhme hts, Solved Previdus Year Papers. Questions and Answers. Free Forever.

A. 10Ω
B. 20Ω
C. 5Ω
D. 203Ω

Answer
28. Two heating coils of resistances 10Ω and 20Ω are connected in parallel and connected to a battery of emf 12 V and internal resistance 1Ω. The power consumed by them are in the ratio
A. 1:4
B. $1: 3$
C. $2: 1$
D. $4: 1$

Answer
29. A proton is projected with a uniform velocity v along the axis of a current-carrying solenoid, then
A. the proton will be accelerated along the axis
B. the proton path will be circular about the axis
C. the proton move along helical path
D. the proton will continue to move with velocity v along the axis Answer
30. In the cyclotron, as radius of the circular path of the charged particle increases (ω) angular velocity, v = linear velocity)
A. both ω and v increase
B. w only increases, v remains constant
C. v increases, ω remains constant
D. v increases, ω decreases

Answer
31. A conducting wire carrying current is arranged as shown in the figure. The magnetic field at 0 is

StudyicAssiqnments, Solved Previous Year Papers. Questions and Answers. Free Forever.
Answer
32. The quantity of a charge that will be transferred by a current flow of 20 A over 1 h 30 min period is
A. $10.8 \times 10^{3} \mathrm{C}$
B. $10.8 \times 10^{4} \mathrm{C}$
C. $5.4 \times 10^{3} \mathrm{C}$
D. $1.8 \times 10^{4} \mathrm{C}$

Answer
33. A galvanometer coil has a resistance of 50Ω and the meter shows full scale deflection for a current of 5 mA . This galvanometer is converted into voltmeter of range $0-20 \mathrm{~V}$ by connecting
A. 3950Ω in series with galvanometer
B. 4050Ω in series with galvanometer
C. 3950Ω in parallel with galvanometer
D. 4050Ω in parallel with galvanometer

Answer
34. $\chi 1$ and $\chi 2$ are susceptibility of a paramagnetic material at temperatures $T_{1} K$ and $T_{2} K$ respectively, then
A. $\chi 1=\chi 2$
B. $\chi 1 \mathrm{~T} 1=\chi 2 \mathrm{~T} 2$
C. $\chi 1 T 2=\chi 1 T 1$
D. $\chi 1 \mathrm{~T} 1=\chi 2 \mathrm{~T} 2$

Answer
35. At certain place, the horizontal component of Earth's magnetic field is 3.0 G and the angle dip at that place is 30°. The magnetic field of Earth at that location is
A. 4.5 G
B. 5.1 G
C. 3.5 G
D. 6.0 G

Answer
36. A long solenoid with 40 turns per cm carries a current of 1 A . The magnetic energy stored per unit volume is
A. $3.2 \pi \mathrm{Jm}-3$
B. $32 \pi \mathrm{Jm}-3$
C. $1.6 \pi \mathrm{Jm}-3$

Like. Share. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com
37. A whreet with 10 spokes earh of length $L \mathrm{~m}$ is rotated with a uniform angula vetocity wima

wheel is
A. $12 \mathrm{~N} \omega \mathrm{BL} 2$
B. $12 \omega \mathrm{BL} 2$
C. $\omega B L 2$
D. $N \omega B L^{2}$

Answer
38. The rms value of current in a 50 Hz AC circuit is 6 A . The average value of AC current over a cycle is
A. 62
B. $3 \pi / 2$
C. Zero
D. $6 \pi 2$

Answer
39. A capacitor of capacitance $10 \mu \mathrm{~F}$ is connected to an AC ammeter. If the source voltage varies as $V=502 \sin 100 t$, the reading of the ammeter is
A. 50 mA
B. 70.7 mA
C. 5.0 mA
D. 7.07 mA

Answer
40. In a series L-C-R circuit, the potential drop across L, C and R respectively are $40 \mathrm{~V}, 120 \mathrm{~V}$ and 60 V . Then, the source voltage is
A. 220 V
B. 160 V
C. 180 V
D. 100 V

Answer
41. In a series L-C-R circuit, an alternating emf (V) and current (i) are given by the equation $V=V 0 \sin \omega t, I=10 \sin \omega t+\pi 3$. The average power dissipated in the circuit over a cycle of $A C$ is
A. VOIO2
B. VOIO4
C. 32 VOIO
D. zero

Answer
42. Electromagnetic radiation used to sterilise milk is

Like. Share. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com

Study, Assignments, Solved Previous Year Papers . Questions and Answers. Free Forever.
D. Radio waves

Answer
43. The process of superimposing message signal on high frequency carrier wave is called
A. amplification
B. demodulation
C. transmission
D. modulation

Answer

44. A plane glass plate is placed over a various coloured letters (violet, green, yellow, red). The letter which appears to raised more is
A. red
B. yellow
C. green
D. violet

Answer
45. A ray of light passes through four transparent media with refractive index n_{1}, n_{2}, n_{3} and n_{4} as shown in the figure. The surfaces of all media are parallel.

If the emergent ray $D E$ is parallel to incident ray $A B$, then
A. $\mathrm{n}_{1}=\mathrm{n}_{4}$
B. $\mathrm{n}_{2}=\mathrm{n}_{4}$
C. $\mathrm{n}_{3}=\mathrm{n}_{4}$
D. $\mathrm{n} 1=\mathrm{n} 2+\mathrm{n} 3+\mathrm{n} 43$

Answer
46. Focal length of a convex lens is 20 cm and its refractive index is 1.5. It produces an erect, enlarged image if the distance of the object from the lens is
A. 40 cm
B. 30 cm
A. 30°
B. 45°
C. 60°
D. 50°

Answer
48. In Young's double slit experiment, the source is white light. One slit is covered with red filter and the other with blue filter. There shall be
A. alternate red and blue fringes
B. alternate dark and pink fringes
C. alternate dark and yellow fringes
D. no interference

Answer
49. Light of wavelength 600 nm is incident normally on a slit of width 0.2 mm . The angular width of central maxima in the diffraction pattern is (measured from minimum to minimum)
A. $6 \times 10^{-3} \mathrm{rad}$
B. $4 \times 10^{-3} \mathrm{rad}$
C. $2.4 \times 10^{-3} \mathrm{rad}$
D. $4.5 \times 10^{-3} \mathrm{rad}$

Answer
50. For what distance ray optics is good approximation when the aperture is 4 mm and the wavelength of light is 400 nm ?
A. 24 m
B. 40 m
C. 18 m
D. 30 m

Answer
51. The variation of photocurrent with collector potential for different frequencies of incident radiation v_{1}, v_{2} and v_{3} is as shown in the graph, then

A. $\mathrm{V}_{1}=\mathrm{V}_{2}=\mathrm{v}_{3}$
B. $\mathrm{v}_{1}>\mathrm{v}_{2}>\mathrm{v}_{3}$
C. $\mathrm{v}_{1}<\mathrm{v}_{2}<\mathrm{v}_{3}$
D. $\mathrm{v} 3=\mathrm{v} 1+\mathrm{v} 22$

Answer
52. The de-Broglie wavelength of an electron accelerated to a potential of 400 V is approximately
A. 0.03 nm
B. 0.04 nm
C. 0.12 nm
D. 0.06 nm

Answer
53. Total energy of electron in an excited state of hydrogen atom is -3.4 eV . The kinetic and potential energy of electron in this state are
A. $K=-3.4 \mathrm{eV}, \mathrm{U}=-6.8 \mathrm{eV}$
B. $K=3.4 \mathrm{eV}, \mathrm{U}-6.8 \mathrm{eV}$
C. $K=-6.8 \mathrm{eV}, \mathrm{U}=+3.4 \mathrm{eV}$
D. $K=+10.2 \mathrm{eV}, \mathrm{U}=-13.6 \mathrm{eV}$

Answer
54. When electron jumps from $n=4$ level to $n=1$ level, the angular momentum of electron changes by
A. $h 2 \pi$
B. $2 h 2 \pi$
C. $3 \mathrm{~h} 2 \pi$
D. $4 h 2 \pi$

Answer
55. A radioactive sample of half-life 10 days contains $1000 \times$ nuclei. Number of original nuclei present after 5 days is
A. 707 x
B. 750 x
C. 500 x

Like. Share. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com

$$
X \rightarrow Y+H e 24 Y \rightarrow Z+2 e-, \text { then }
$$

A. X and Z are isobars
B. X and Y are isotopes
C. X and Z are isotones
D. X and Z are isotopes

Answer
57. A nucleus of mass $20 u$ emits a γ-photon of energy 6 MeV . If the emission assume to occur when nucleus is free and rest, then the nucleus will have kinetic energy nearest to (Take, $1 \mathrm{u}=1.6 \times$ $10^{-27} \mathrm{~kg}$)
A. 10 keV
B. 1 keV
C. 0.1 keV
D. 100 keV

Answer
58. Constant $D C$ voltage is required from a variable $A C$ voltage. Which of the following is correct order of operation ?
A. Regulator, filter, rectifier
B. Rectifier, regulator, filter
C. Rectifier, filter, regulator
D. Filter, regulator, rectifier

Answer
59. In a transistor, the collector current varies by 0.49 mA and emitter current varies by 0.50 mA . Current gain β measured is
A. 49
B. 150
C. 99
D. 100

Answer
60. Identify the logic operation carried out by the following circuit

A. AND

B NAND
Like. Share. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com

Physics CJNQ2016	ZIgyo

Answstatudy, Assignments, Solved Previous Year Papers. Questions and Answers. Free Forever.

