www.zigya.com

Previous Year Paper

Physics - 2017

Study, Assignments, Solved Previous Year Papers . Questions and Answers. Free Forever.

¿ \equiv Multiple Choice Questions

1. A person observes that the full length of a train subtends an angle of 15°. If the distance between the train and the person is 3 km , the length of the train, calculated using parallax method, in meters is
A. 45
B. 45π
C. 250π
D. 75π

Answer
2. In a measurement, random error
A. can be decreased by increasing the number of readings and averaging them
B. can be decreased by changing the person who takes the reading
C. can be decreased by using new instrument
D. can be decreased by using a different method in taking the reading Answer
3. In order to measure the period of a single pendulum using a stop clock, a student repeated the experiment for 10 times and noted down the time period for each experiment as $5.1,5.0,4.9$, $4.9,5.1,5.0,4.9,5.1,5.0,4.9 \mathrm{~s}$. The correct way of expressing the result for the period is
A. 4.99 s
B. 5.0 s
C. 5.00 s
D. 4.9 s

Answer
4. The following figure gives the movement of an object. Select the correct statement from the given choices.

A. The total distance travelled by the object is 975 m

Like. Share. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com

Exam Year
2017
C. The maximum deceleration happend between 25th and 85th seconds

Study, Assignments, Solved Previous Year Papers. Questions and Answers. Free Forever.
D. The object was at rest between 10th and 15th seconds

Answer
5. Two object P and Q, travelling in the same direction starts from rest. While the object P starts at time $t=0$ and object Q starts later at $\mathrm{t}=30 \mathrm{~min}$. The object P has an acceleration of $40 \mathrm{~km} / \mathrm{h}^{2}$. To catch P at a distance of 20 km , the acceleration of Q should be
A. $40 \mathrm{~km} / \mathrm{h}^{2}$
B. $80 \mathrm{~km} / \mathrm{h}^{2}$
C. $160 \mathrm{~km} / \mathrm{h}^{2}$
D. $120 \mathrm{~km} / \mathrm{h}^{2}$

Answer

6. A train of length L move with a constant speed V_{t}. A person at the back of the train fires a bullet at time $t=0$ towards a target which is at a distance of D (at time $t=0$) from the front of the train (on the same direction of motion). Another person at the front of the train fires another bullet at time $\mathrm{t}=\mathrm{T}$ towards the same target. Both bullets reach the target at the same time. Assuming the speed of the bullets V_{b} are same, the length of the train is
A. $\mathrm{T} \times\left(\mathrm{V}_{\mathrm{b}} \times 2 \mathrm{~V}_{\mathrm{t}}\right)$
B. $T \times\left(V_{b}+V_{t}\right)$
C. $2 \mathrm{VbDVb}+\mathrm{Vt}+\mathrm{TVb}-\mathrm{Vt}$
D. $\mathrm{T} \times\left(\mathrm{V}_{\mathrm{b}}-2 \mathrm{~V}_{\mathrm{t}}\right)$

Answer
7. From the ground, a projectile is fired at an angle of 60 degrees to the horizontal with a speed of $20 \mathrm{~m} / \mathrm{s}$. Take, acceleration due to gravity as $10 \mathrm{~m} / \mathrm{s}^{2}$. The horizontal range of the projectile is
A. 103 m
B. 20 m
C. 203
D. 403 m

Answer
8. A person from a truck, moving with a constant speed of $60 \mathrm{~km} / \mathrm{h}$, throws a ball upwards with a speed of $60 \mathrm{~km} / \mathrm{h}$. Neglecting the effect of Earth and choose the correct answer from the given choice.
A. The person cannot catch the ball when it comes down since the truck is moving
B. The person can catch the ball when it comes down, if the truck is stopped immediately after throwing the ball
C. The person can catch the ball when it comes down, if the truck continues to move with a constant speed of $60 \mathrm{~km} / \mathrm{h}$
Like. Share. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com
9. A body of mass 2 m moving with velocity v makes a head on elastic collision with another body of mass m which is initially at rest. Loss of kinetic energy of the colliding body (mass 2 m) is
A. $1 / 9$ of its initial kinetic energy
B. $1 / 6$ of its initial kinetic energy
C. $8 / 9$ of its initial kinetic energy
D. $1 / 2$ of its initial kinetic energy

Answer
10. Displacement x (in meters), of body of mass 1 kg as a function of time t , on a horizontal smooth surface is given as $x=2 t^{2}$. The work done in the first one second by the external force is
A. 1 J
B. 2 J
C. 4 J
D. 8 J

Answer
11. Under the action of a constant force, a particle is experiencing a constant acceleration. The power is
A. zero
B. positive constant
C. negative constant
D. increasing uniformly with time

Answer
12. A comet orbits around the Sun in an elliptical orbit. Which of the following quantities remains constant during the course of its motion ?
A. Linear velocity
B. Angular velocity
C. Angular momentum
D. Kinetic energy

Answer
13. Consider a satellite moving in a circular orbit around Earth. If K and V denote its kinetic energy and potential energy respectively, then (Choose the convention, where $V=0$ as $r \rightarrow \infty$)
A. $K=V$
B. $K=2 V$
C. $V=-2 K$
D. $K=-2 V$

Answer
14. Assuming the mass of Earth to be ten times the mass of Mars, its radius to be twice the radius of Like. Share. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com
B. $0.4 \mathrm{~m} / \mathrm{s}^{2}$
C. $2 \mathrm{~m} / \mathrm{s}^{2}$
D. $4 \mathrm{~m} / \mathrm{s}^{2}$

Answer
15. The semi-major axis of the orbit of Saturn is approximately nine times that of Earth. The time period of revolution of Saturn is approximately equal to
A. 81 years
B. 27 years
C. 729 years
D. 813 years

Answer
16. The x-t plot shown in the figure below describes the motion of the particle, along x-axis, between two positions A and B. The particle passes through two intermediate points P_{1} and P_{2} as shown in the figure

A. The instantaneous velocity is positive as P_{1} and negative at P_{2}.
B. The instantaneous velocity is negative at both P_{1} and P_{2}
C. The instantaneous velocity is negative at P_{1} and positive at P_{2}
D. The instantaneous velocity is positive at both P_{1} and P_{2}

Answer
17. A ball falls from a table top with initial horizontal speed V_{0}. In the absence of air resistance, which of the following statement is correct.
A. The vertical component of the acceleration changes with time
B. The horizontal component of the velocity does not change with time
C. The horizontal component to the acceleration is non zero and finite
D. The time taken by the ball to touch the ground depends on V_{0}

Answer
18. Aman of mass 60 kg climbed down using an elevator The elevator had an acceleration $4 \mathrm{~ms}^{-2}$. If Aike. Share. Sookmark. Sownlod. Make dotes.
the aderemeribn due to grav ty is $10 \mathrm{~ms}^{-2}$
A. 60 N

Study, Assignments, Solved Previous Year Papers. Questions and Answers. Free Forever. B. 240 N
C. 360 N
D. 840 N

Answer
19. A uniform rod of length of 1 m arid mass of 2 kg is attached to a side support at 0 as shown in the figure. The rod is at equilibrium due to upward force T acting at P. Assume the acceleration due to gravity as $10 \mathrm{~m} / \mathrm{s}^{2}$. The value of T is

A. 0
B. 2 N
C. 5 N
D. 10 N

Answer
20. CO^{-}ion moving with kinetic energy of 20 keV dissociates into O^{-}and C which move along the parent ion direction. Assuming no energy is released during dissociation, the kinetic energy of the daughters $(\mathrm{K} . \mathrm{E})_{o}$ and $(\mathrm{K} . \mathrm{E})_{C}$ are related as
A. $(\mathrm{K} . E)_{0^{-}}=(\mathrm{K} . \mathrm{E})_{\mathrm{C}}$
B. $(\mathrm{K} . \mathrm{E})_{0^{-}} /(\mathrm{K} . \mathrm{E})_{\mathrm{C}}=16 / 12$
C. $(\mathrm{K} . \mathrm{E})_{0^{-}} /(\mathrm{K} . \mathrm{E})_{\mathrm{C}}=12 / 16$
D. $(\mathrm{K} . \mathrm{E})_{0^{-}} /(\mathrm{K} . \mathrm{E})_{\mathrm{C}}=16 / 28$

Answer
21. A wheel rotating at $12 \mathrm{rev} / \mathrm{sis}$ brought to rest in 6 s . The average angular deceleration in rad $/ \mathrm{s}^{2}$ of the wheel during this process is
A. -4π
B. 4
C. 72
D. $1 / \pi$

Answer
22. A torque of I N-m is applied to a wheel which is at rest. After 2 second the angular momentum in Like. Share. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com
A. 0.5

Study, Assignments, Solved Previous Year Papers . Questions and Answers. Free Forever.
B. 1
C. 2
D. 4

Answer
23. A massless spring of length I and spring constant k is placed vertically on a table. A ball of mass m is just kept on top of the spring. The maximum velocity of the ball is
A. gmk
B. g 2 mk
C. 2 gmk
D. g 2 mk

Answer
24. A particle of mass 3 kg , attached to a spring with force constant $48 \mathrm{~N} / \mathrm{m}$ execute simple harmonic motion on a frictionless horizontal surface. The time period of oscillation of the particle, in seconds, is
A. $\pi / 4$
B. $\pi / 2$
C. 2π
D. 8π

Answer
25. The position and velocity of a particle executing simple harmonic motion at $t=0$ are given by 3 cm / s and $8 \mathrm{~cm} / \mathrm{s}$ respectively. If the angular frequency of the particle is $2 \mathrm{rad} / \mathrm{s}$, then the amplitude of oscillation, in centimeters, is
A. 3
B. 4
C. 5
D. 6

Answer
26. A simple harmonic motion is represented by $x(t)=\sin ^{2} \omega t-2 \cos ^{2} \omega t$. The angular frequency of oscillation is given by
A. ω
B. 2ω
C. 4ω
D. $\omega / 2$

Answer
27. A transverse wave in propagating on a stretched string of mass per unit length $32 \mathrm{~g} / \mathrm{m}$. The tension on the string is 80 N . The speed of the wave over the string is

Like. Sh $5 / 2 \mathrm{~m} / \mathrm{s}$
Like. Śhare. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com

Physics BJJ馬2097	zigyo	Exam Year 2017

Stud ${ }^{2} 5$, Asssignments, Solved Previous Year Papers . Questions and Answers. Free Forever.
Answer
28. Consider the propagating sound (with velocity $330 \mathrm{~m} / \mathrm{s}$) in a pipe of length 1.5 m with one end closed and the other open. The frequency associated with the fundamental mode is
A. 11 Hz
B. 55 Hz
C. 110 Hz
D. 165 Hz

Answer

29. A standing wave propagating with velocity $300 \mathrm{~m} / \mathrm{s}$ in an open pipe of length 4 m has four nodes. The frequency of the wave is
A. 75 Hz
B. 100 Hz
C. 150 Hz
D. 300 Hz

Answer
30. Consider the vehicle emitting sound wave of frequency 700 Hz moving towards an observer at a speed $22 \mathrm{~m} / \mathrm{s}$. Assuming the observer as well as the medium to be at rest and velocity of sound in the medium to be $330 \mathrm{~m} / \mathrm{s}$, the frequency of sound as measured by the observer is
A. $2525 / 4 \mathrm{~Hz}$
B. $1960 / 3 \mathrm{~Hz}$
C. $2240 / 3 \mathrm{~Hz}$
D. 750 Hz

Answer
31. A capillary tube of radius 0.5 mm is immersed in a beaker of mercury. The level inside the tube is 0.8 cm below the level in beaker and angle of contact is 120°. What is the surface tension of mercury, if the mass density of mercury is $\rho=13.6 \times 10^{3} \mathrm{kgm}^{-3}$ and acceleration due to gravity is $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$?
A. $0.225 \mathrm{~N} / \mathrm{m}$
B. $0.544 \mathrm{~N} / \mathrm{m}$
C. $0.285 \mathrm{~N} / \mathrm{m}$
D. $0.375 \mathrm{~N} / \mathrm{m}$

Answer
32. Which of the following statement related to stress-strain relation is correct ?
A. Stress is linearly proportional to strain irrespective of the magnitude of the strain
B. Stress is linearly proportional to strain above
C. Stress is linearly proportional to strain for stress much smaller than at the yield point Like. Share. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com
 a table. A tangential force of 30 N is applied to the slab. If the shear moduli of the material is 4 x $10^{10} \mathrm{~N} / \mathrm{m}^{2}$, then displacement of the upper edge, in meters is
A. 4×10^{-12}
B. 4×10^{-10}
C. 6×10^{-10}
D. 6×10^{-12}

Answer
34. Initially a beaker has 100 g of water at temperature $90^{\circ} \mathrm{C}$. Later another 600 g of water at temperature $20^{\circ} \mathrm{C}$ was poured into the beaker. The temperature, T of the water after mixing is
A. $20^{\circ} \mathrm{C}$
B. $30^{\circ} \mathrm{C}$
C. $45^{\circ} \mathrm{C}$
D. $55^{\circ} \mathrm{C}$

Answer
35. Match the following

I	Isothermal process	1	$\Delta Q=0$
II	Isobaric process	2	$\Delta V=0$
III	Isochoric process	3	$\Delta P=0$
IV	Adiabatic process	4	$\Delta T=0$

A. I-4, II-3, III-2, IV-1
B. I-3, II-2, III-1, IV-4
C. I-1, II-2, III-3, IV-4
D. I-4, II-2, III-3, IV-1

Answer
36. For an ideal gas, the specific heat at constant pressure C_{p} is greater than the specific heat at constant volume C_{v}. This is because
A. There is a finite work done by the gas on its environment when its temperature is increased while the pressure remains constant
B. There is a finite work done by the gas on its environment when its pressure is increased while the volume remains constant
C. There is a finite work done by the gas on its environment when its pressure is
37. Whrich of the following statement is correct?

B. Sound waves and waves on a string and transverse but light waves are longitudinal
C. Light waves and waves on a string are transverse but sound waves are longitudinal
D. Light waves and sound waves are transverse but waves on string are longitudinal Answer
38. The phase velocity of a wave described by the equations $\psi=\psi 0 \sin k x+\omega t+\pi / 2$ is
A. x / t
B. ψ_{0} / ω
C. ω / k
D. $\pi / 2 \mathrm{k}$

Answer
39. Wavelength of the wave with 30 MHz frequency is
A. 1 cm
B. 10 cm
C. 100 cm
D. 1000 cm

Answer
40. A copper wire with a cross-section area of $2 \times 10^{-6} \mathrm{~m}^{2}$ has a free electron density equal to 5×10^{22} $/ \mathrm{cm}^{3}$. If this wire carries a current of 16 A , the drift velocity of the electron is
A. $1 \mathrm{~m} / \mathrm{s}$
B. $0.1 \mathrm{~m} / \mathrm{s}$
C. $0.01 \mathrm{~m} / \mathrm{s}$
D. $0.001 \mathrm{~m} / \mathrm{s}$

Answer
41. The resistance of the tungsten wire in the light bulb, which is $120 \mathrm{~V} / 75 \mathrm{~W}$ and powered by a 120 V direct current supply, is
A. 0.37Ω
B. 1.2Ω
C. 2.66Ω
D. 192Ω

Answer
42. The value of the current I_{1}, I_{2} and I_{3} flowing through the circuit given below is

Physics 	zigyo	$\begin{gathered} \text { Exam Year } \\ 2017 \end{gathered}$

Stucy, Assignments, Solved Previous Kear Papers . Questions and Answers. Free Forever.

A. $\mathrm{I}_{1}=-3 \mathrm{~A}, \mathrm{I}_{2}=2 \mathrm{~A}, \mathrm{I}_{3}=-1 \mathrm{~A}$
B. $I_{1}=2 \mathrm{~A}, \mathrm{I}_{2}=-3 \mathrm{~A}, \mathrm{I}_{3}=-1 \mathrm{~A}$
C. $I_{1}=3 \mathrm{~A}, \mathrm{I}_{2}=-1 \mathrm{~A}, \mathrm{I}_{3}=-2 \mathrm{~A}$
D. $I_{1}=1 \mathrm{~A}, \mathrm{I}_{2}=-3 \mathrm{~A}, \mathrm{I}_{3}=-2 \mathrm{~A}$

Answer
43. A silver wire has temperature coefficient of resistivity $4 \times 10^{-3} /{ }^{\circ} \mathrm{C}$ and its resistance at $20^{\circ} \mathrm{C}$ is 10Ω. Neglecting any change in dimensions due to the change in temperature, its resistance at $40^{\circ} \mathrm{C}$ is
A. 0.8Ω
B. 1.8Ω
C. 9.2Ω
D. 10.8Ω

Answer
44. A charge Q placed at the centre of a metallic spherical shell with inner and outer radii R_{1} and R_{2} respectively. The normal component of the electric field at any point on the Gaussian surface with radius between R_{1} and R_{2} will be
A. Zero
B. $\mathrm{Q} 4 \pi \mathrm{R} 12$
C. $\mathrm{Q} 4 \pi \mathrm{R} 22$
D. $\mathrm{Q} 4 \pi(\mathrm{R} 1-\mathrm{R} 2) 2$

Answer
45. A sphere of radius R has a uniform volume charge density ρ. The magnitude of electric field at a distance r from the centre of the sphere, where $r>R$, is
A. $\rho 4 \pi \varepsilon 0 r 2$
B. $\rho R 2 \varepsilon 0 r 2$
C. $\rho R 3 \varepsilon 0 r 2$
D. $\rho R 33 \varepsilon 0 r 2$

Answer

Stu_dy,1 Assignments, Solved Previous Year Papers . Questions and Answers. Free Forever.
C. 90 V
D. 99 V

Answer

47. Two infinitely long parallel plates of equal areas $6 \mathrm{~cm}^{2}$ are separated by a distance of 1 cm . While one of the plates has a charge of +10 nC and the other has -10 nC . The magnitude of the electric field between the plates, if $\varepsilon 0=10-936 \pi \mathrm{~F} / \mathrm{m}$ is
A. $0.6 \pi \mathrm{kV} / \mathrm{m}$
B. $6 \pi \mathrm{kV} / \mathrm{m}$
C. $600 \pi \mathrm{kV} / \mathrm{m}$
D. $60 \pi \mathrm{~V} / \mathrm{m}$

Answer
48. A proton moves with a speed of $5.0 \times 10^{6} \mathrm{~m} / \mathrm{s}$ along the x-axis. It enters a region where there is a magnetic field of magnitude 2.0 Tesla directed at an angle of 30° to the x-axis and lying in the xy-plane. The magnitude of the magnetic force on the proton is
A. $0.8 \times 10^{-13} \mathrm{~N}$
B. $1.6 \times 10^{-13} \mathrm{~N}$
C. $8.0 \times 10^{-13} \mathrm{~N}$
D. $8.01 \times 10^{-13} \mathrm{~N}$

Answer
49. A long straight wire of radius R carries a steady current I_{0}, uniformly distributed throughout the cross-section of the wire. The magnetic field at a radial distance r from the centre of the wire, in the region $r>R$, is
A. $\mu 0102 \pi r$
B. $\mu 0102 \pi R$
C. $\mu 010 R 22 \pi r$
D. $\mu 010 r 22 \pi R$

Answer
50. If the cyclotron oscillator frequency is 16 MHz , then what should be the operating magnetic field for accelerating the proton of mass $1.67 \times 10^{-27} \mathrm{~kg}$?
A. $0.334 \pi \top$
B. $3.34 \pi T$
C. $33.4 \pi \mathrm{~T}$
D. $334 \pi T$

Study, Bssignments, Solved Previous Year Papers. Questions and Answers. Free Forever.
D. $E \times B$

Answer

52. Assume that a radio station is about 200 km away at your location and the station operates 972 kHz . How long does it take for an electromagnetic signal to travel from the station to you and how many wave crests does it send out per second?
A. $666 \mu \mathrm{~s}$ and 9.72×10^{5} crests per second
B. $666 \mu \mathrm{~s}$ and 972×10^{5} crests per second
C. $555 \mu \mathrm{~s}$ and 97.2×10^{7} crests per second
D. $555 \mu \mathrm{~s}$ and 0.972×10^{5} crests per second Answer
53. The electric field portion of an electromagnetic wave is given by (all variables in SI units) $E=$ $10^{-4} \sin \left(6 \times 10^{5} t-0.01 x\right)$. The frequency (f) and the speed (v) of electromagnetic wave are
A. $f=30 / \pi \mathrm{kHz}$ and $v=1.5 \times 10^{7} \mathrm{~m} / \mathrm{s}$
B. $f=90 / \pi \mathrm{kHz}$ and $v=6.0 \times 10^{7} \mathrm{~m} / \mathrm{s}$
C. $f=300 / \pi \mathrm{kHz}$ and $v=6.0 \times 10^{7} \mathrm{~m} / \mathrm{s}$
D. $f=600 / \pi \mathrm{kHz}$ and $v=7.5 \times 10^{7} \mathrm{~m} / \mathrm{s}$

Answer
54. If copper and silicon pieces are heated, the resistance of
A. each will increase
B. each will decrease
C. copper will increase and silicon will decrease
D. copper will decrease and silicon will increase Answer
55. If a magnet is dropped through a vertical hollow copper tube, then
A. the time taken to reach the ground is longer than the time taken, if the tube was made out of plastic
B. the magnet will get attracted and stick to the copper tube
C. the time taken to reach the ground is longer than the time taken, if the tube was made out of stainless steel
D. the time taken to reach the ground does not depend on the radius of the copper tube Answer
56. Consider a circular wire loop of radius R spinning about a diametrical chord which is perpendicular to uniform magnetic field B0k^
A. The magnitude of the induced EMF in the loop is maximum when the plane of the loop Like. Share. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com
D. EMF induced will be the same for a larger radius of the loop in the same field Answer
57. An electric motor which loaded has an effective resistance of 30Ω and an inductive reactance of 40Ω.If the motor is powered by a source with maximum voltage of 420 V , the maximum current is
A. 6 A
B. 8.4 A
C. 10 A
D. 12 A

Answer
58. If the rms value of sinusoidal input to a full wave rectifier is $V 0 / 2$, then the rms value of the rectifier's output is
A. $\mathrm{V} 0 / 2$
B. $\mathrm{V} 02 / 2$
C. $V_{0}{ }^{2} / 2$
D. 2 V 02

Answer
59. The speed of light in vacuum is equal to
A. $\mu_{0} \varepsilon_{0}$
B. $\mu 0^{2} \varepsilon o^{2}$
C. $1 \mu 0 \varepsilon 0$
D. $\mu 0 \varepsilon 0$

Answer
60. In Young's double slits experiment, if the separation between the slits is halved, and the distance between the slits and the screen is doubled, then the fringe width compared to the original one will be
A. Unchanged
B. Halved
C. Doubled
D. Quadrupled

Answer
61. What wavelength must electromagnetic radiation have if a photon in the beam has the same momentum as an electron moving with a speed $1.1 \times 10^{5} \mathrm{~m} / \mathrm{s}$ (Planck's constant $=6.6 \times 10^{-34} \mathrm{~J}-\mathrm{s}$, rest mass of electron $=9 \times 10^{-31} \mathrm{~kg}$?
A. $2 / 3 \mathrm{~nm}$

Like. Share. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com

Studdy Assignments, Solved Previous Year Papers . Questions and Answers. Free Forever.
Answer
62. Huygens' wave theory of light cannot explain
A. Diffraction phenomena
B. Interference phenomena
C. Photoelectric effect
D. Polarization of light

Answer
63. An electron, a neutron and an alpha particle have same kinetic energy and their de-Broglie wavelength are $\lambda_{e}, \lambda_{n}, \lambda_{\alpha}$ and respectively. Which statement is correct about their de-Broglie wavelengths ?
A. $\lambda_{e}>\lambda_{n}>\lambda_{\alpha}$
B. $\lambda_{e}<\lambda_{n}>\lambda_{\alpha}$
C. $\lambda_{e}<\lambda_{n}<\lambda_{\alpha}$
D. $\lambda_{e}>\lambda_{n}<\lambda_{\alpha}$

Answer
64. It takes 4.6 eV to remove one of the least tightly bound electrons from a metal surface. When monochromatic photons strike the metal surface, electrons having kinetic energy from zero to 2.2 eV are ejected. What is the energy of the incident photons ?
A. 2.4 eV
B. 2.2 eV
C. 6.8 eV
D. 4.6 eV

Answer
65. In an insulator, band gap of the order of
A. 0.1 eV
B. 1 eV
C. 5 eV
D. 100 eV

Answer
66. For a P-N junction diode
A. Forward current in $m A$ and reverse current is in $\mu \mathrm{A}$
B. Forward current is in $\mu \mathrm{A}$ are reverse current is in mA
C. Both forward and reverse currents are in $\mu \mathrm{A}$
D. Both forward and reverse currents are in mA
67. For a Zenerdiode

Like. Share. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com

Exam Year
2017
B. Pregiom is heavityctoped but n region is lightly doped

Studłe Assignments, Solved Previous Year, Papers figuestions and Answers. Free Forever.
D. both p and n regions are lightly doped

Answer
68. Speech signals is in the range of
A. 3700 Hz to 7000 A 。 wavelength
B. 20 Hz to 20 kHz frequency
C. 300 Hz to 3100 Hz frequency
D. 540 kHz to 1600 kHz frequency

Answer
69. To transmit a signal of frequency ω_{m} with a carrier frequency ω_{c}, in $A M$ transmission, the bandwidth of the filter and amplifier is
A. ω_{m}
B. $2 \omega_{\mathrm{m}}$
C. ω_{c}
D. $\omega_{c}-\omega_{m}$

Answer
70. Which of the following particle when bombards on ${ }^{65} \mathrm{Cu}$ will turn into ${ }^{66} \mathrm{Cu}$?
A. Proton
B. Neutron
C. Electron
D. Alpha particle

Answer
71. 8 g of Cu^{66} undergoes radioactive decay and after 15 minutes only 1 g remains. The half-life, in minutes, is then
A. $15 \ln (2) / \ln (8)$
B. $15 \ln (8) / \ln (2)$
C. $15 / 8$
D. $8 / 15$

Answer

72. For a light nuclei, which of the following relation between the atomic number (Z) and mass number (A) is valid?
A. $A=Z / 2$
B. $Z=A$
C. $Z=A / 2$
D. $Z=A^{2}$

Answer
Like. Share. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com

