www.zigya.com

Previous Year Paper

Physics - 2014

Exam Year 2014

Study, Assignments, Solved Previous Year Papers . Questions and Answers. Free Forever.

¿ \equiv Multiple Choice Questions

1. Consider three vectors $A=i^{\wedge}+j^{\wedge}-2 k^{\wedge}, B=i^{\wedge}-j^{\wedge}+k^{\wedge}$ and $C=2 i^{\wedge}-3 j^{\wedge}+4 k^{\wedge}$. A vector X of the form $\alpha A+\beta B$ (α and β are numbers) is perpendicular to C. The ratio of α and β is
A. 1:1
B. $2: 1$
C. $-1: 1$
D. $3: 1$

Answer
2. In which of the following pairs, the two physical quantities have different dimensions ?
A. Planck's constant and angular momentum
B. Impulse and linear momentum
C. Moment of inertia and moment of a force
D. Energy and torque

Answer
3. A cricket ball thrown across a field is at heights h_{1} and h_{2} from the point of projection at times t_{1} and t_{2} respectively after the throw. The ball is caught by a fielder at the same height as that of projection. The time of flight of the hall in this journey is
A. h1t22-h2t12h1t2-h2t1
B. $h 1 t 12+h 2 t 22 h 2 t 1+h 1 t 2$
C. $h 1 t 22+h 2 t 12 h 1 t 2+h 2 t 1$
D. h1t12-h2t22h1t1-h2t2

Answer
4. A wooden block is floating on water kept in a beaker. 40% of the block is above the water surface. Now the beaker is kept inside a lift that starts going upward with acceleration equal to $g / 2$. The block will then
A. sink
B. float with 10% above the water surface
C. float with 40% above the water surface
D. float with 70% above the water surface

Answer
5. A smooth massless string passes over a smooth fixed pulley. Two masses m_{1} and $m_{2},\left(m_{1}>m_{2}\right)$ are tied at the two ends of the string. The masses are allowed to move under gravity starting
B. mL-m $22 m 1+m \angle g$

Study, Assignments, Solved Previous Year Papers. Questions and Answers. Free Forever. C. $\left(\mathrm{m}_{1}-\mathrm{m}_{2}\right){ }_{\mathrm{g}}$
D. $m 1+m 22 m 1-m 2 g$

Answer

6. To determine the coefficient of friction between a rough surface and a block, the surface is kept inclined at 45° and the block is released from rest. The block takes a time t in moving a distance d. The rough surface is then replaced by a smooth surface and the same experiment is repeated. The block now takes a time $\mathrm{t} / 2$ in moving down the same distance d . The coefficient of friction is
A. $3 / 4$
B. $5 / 4$
C. $1 / 2$
D. $1 / 2$

Answer
7. A particle is moving uniformly in a circular path of radius r. When it moves through an angular displacement θ, then the magnitude of the corresponding linear displacement will be
A. $2 r \cos \theta 2$
B. $2 r \cot \theta 2$
C. $2 r \tan \theta 2$
D. $2 r \sin \theta 2$

Answer
8. A uniform rod is suspended horizontally from its mid- point. A piece of metal whose weight is w is suspended at a distance I from the mid-point. Another weight w_{1} is suspended on the other side at a distance I_{1} from the mid-point to bring the rod to a horizontal position. When w is completely immersed in water, W_{1} needs to be kept at a distance I_{1} from the mid-point to get the rod back into horizontal position. The specific gravity of the metal piece is
A. ww1
B. $w|1 w l-w 1| 2$
C. $|1| 1-\mid 2$
D. 1112

Answer
9. A particle moves with constant acceleration along a straight line starting from rest. The percentage increase in its displacement during the 4th second compared to that in the 3rd second is
A. 33%
B. 40%
C. 66%
D. 77%

Answer
Aike. Share. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com
B. 2 E
C. 2E3
D. -2 E 3

Answer
11. A uniform solid spherical ball is rolling down a smooth inclined plane from a height h. The velocity attained by the ball when it reaches the bottom of the inclined plane is v . If the ball is now thrown vertically upwards with the same velocity v, the maximum height to which the ball will rise is
A. 5 h 8
B. 3 h 5
C. 5 h 7
D. 7 h 9

Answer
12. If n denotes a positive integer, h the Planck's constant, q the charge and B the magnetic field, then the quantity $n h 2 \pi q B$ has the dimension of
A. area
B. length
C. speed
D. acceleration

Answer
13. Consider a black body radiation in a cubical box at absolute temperature T. If the length of each side of the box is doubled and the temperature of the walls of the box and that of the radiation is halved, then the total energy
A. halves
B. doubles
C. quadruples
D. remains the same

Answer
14. A solid uniform sphere resting on a rough horizontal plane is given a horizontal impulse directed through its centre so that it starts sliding with an initial velocity v_{0}. When it finally starts rolling without slipping the speed of its centre is
A. 27 v 0
B. 37 v 0
C. 57 v 0
D. 67 v 0
15. ThreNEdETti2©1square plate rotate abo
kimetic emergies are equal. Each of the rotation axes passes through the centre of the square.

A. 1:1:1
B. $2: 2: 1$
C. $1: 2: 1$
D. $1: 2: 2$

Answer
16. A thin rod $A B$ is held horizontally so that it can freely rotate in a vertical plane about the end A as shown in the figure. The potential energy of the rod when it hangs vertically is taken to be zero. The end B of the rod is released from rest from a horizontal position. At the instant the rod makes an angle θ with the horizontal

A. the speed of end B is proportional to $\sin \theta$
B. the potential energy is proportional to $(1-\cos \theta)$
C. the angular acceleration is proportional to $\cos \theta$
D. the torque about A remains the same as its initial value

Answer
17. A whistle whose air column is open at both ends has a fundamental frequency of 5100 Hz . If the speed of sound in air is $340 \mathrm{~ms}^{-1}$, the length of the whistle, in cm , is
A. $5 / 3$
B. $10 / 3$
C. 5
D. $20 / 3$

Answer
18. One mole of an ideal monoatomic gas is heated at a constant pressure from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$. Then

Btudy ${ }^{6}$, Assignt ${ }^{3}$ ments, Solved Previous Year Papers. Questions and Answers. Free Forever.

```
    c. 2.08\times10]
    D. }1.25\times1\mp@subsup{0}{}{3}\textrm{J
```

Answer
19. When a particle executing SHM oscillates with a frequency v, then the kinetic energy of the particle
A. changes periodically with a frequency of v
B. changes periodically with a frequency of 2 v
C. changes periodically with a frequency of $v / 2$
D. remains constant

Answer
20. A small metal sphere of radius a is falling with a velocity v through a vertical column of a viscous liquid. If the coefficient of viscosity of the liquid is η, then the sphere encounters an opposing force of
A. $6 \pi \eta a 2 v$
B. $6 \eta \vee \pi a$
C. 6mnav
D. $\pi \eta v 6 a 3$

Answer
21. A scientist proposes a new temperature scale in which the ice point is $25 X(X$ is the new unit of temperature) and the steam point is 305 X . The specific heat capacity of water in this new scale is (in $\mathrm{Jg}^{-1} \mathrm{X}^{-1}$)
A. 4.2×10^{3}
B. 3.0×10^{3}
C. 1.2×10^{3}
D. 1.5×10^{3}

Answer
22. One mole of a van der Waals' gas obeying the equation

$$
p+a V 2 V-b=R T
$$

undergoes the quasi-static cyclic process which is shown in the $\mathrm{p}-\mathrm{V}$ diagram. The net heat absorbed by the gas in this process is

zigyo

A. $12 \mathrm{p} 1-\mathrm{p} 2 \mathrm{~V} 1-\mathrm{V} 2$
B. $12 \mathrm{p} 1+\mathrm{p} 2(\mathrm{~V} 1-\mathrm{V} 2)$
C. $12 \mathrm{p} 1+\mathrm{aV} 12-\mathrm{p} 2-\mathrm{aV} 22(\mathrm{~V} 1-\mathrm{V} 2)$
D. $12 \mathrm{p} 1+\mathrm{aV} 12+\mathrm{p} 2+\mathrm{aV} 22(\mathrm{~V} 1-\mathrm{V} 2)$

Answer
23. A metal rod is fixed rigidly at two ends so as to prevent its thermal expansion. If L, α and Y respectively denote the length of the rod, coefficient of linear thermal expansion and Young's modulus of its material, then for an increase in temperature of the rod by ΔT, the Iongitudinal stress developed in the rod is
A. inversely proportional to α
B. inversely proportional to Y
C. directly proportional to $\Delta \mathrm{T} / \mathrm{Y}$
D. independent of L

Answer
24. A drop of some liquid of volume $0.04 \mathrm{~cm}^{3}$ is placed on the surface of a glass slide. Then another glass slide is placed on it in such a way that the liquid forms a thin layer of area $20 \mathrm{~cm}^{2}$ between the surfaces of the two slides. To separate the slides a force of 16×10^{5} dyne has to be applied normal to the surfaces. The surface tension of the liquid is (in dyne-cm ${ }^{-1}$)
A. 60
B. 70
C. 80
D. 90

Answer
25. The displacement of a particle in a periodic motion is given by $y=4 \cos 2 t 2 \sin 1000 t$. This displacement may be considered as the result of superposition of n independent harmonic oscillations. Here n is
A. 1

B. 2

Like. Shảre. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com

shape and wall thickness but made of different materials. The containers are kept in identical surroundings. The ice in P melts completely in time t, whereas in Q takes a time t_{2}. The ratio of thermal conductivities of the materials of P and Q is
A. $t_{2}: t_{1}$
B. $\mathrm{t}_{1}: \mathrm{t}_{2}$
C. $t_{1}{ }^{2}: t_{2}{ }^{2}$
D. $\mathrm{t}_{2}{ }^{2}: \mathrm{t}_{1}{ }^{2}$

Answer
27. A car is moving with a speed of $72 \mathrm{~km}^{-1}$ towards a roadside source that emits sound at a frequency of 850 Hz . The car driver listens to the sound while approaching the source and again while moving away from the source after crossing it. If the velocity ofsound is $340 \mathrm{~ms}^{-1}$, the difference of the two frequencies, the driver hears is
A. 50 Hz
B. 85 Hz
C. 100 Hz
D. 150 Hz Answer
28. Sound waves are passing through two routes-one in straight path and the other along a semicircular path of radius r and are again combined into one pipe and superposed as shown in the figure. If the velocity of sound waves in the pipe is v, then frequencies of resultant waves of maximum amplitude will be integral multiples of

A. $\operatorname{vr}(\pi-2)$
B. $\operatorname{vr} \pi-1$
C. $2 \mathrm{vr} \pi-1$
D. $\operatorname{vr} \pi+1$

Answer
29. To determine the composition of a bimetallic alloy, a sample is first weight in air and then in water. These weights are found to be w_{1} and w_{2} respectively. If the densities of the two
zigyo

Exam Year
2014

Study, Assignments, Solved Previous Year Papers. Questions and Answers. Free Forever.

Answer

30. A 10 W electric heater is used to heat a container filled with 0.5 kg of water. It is found that the temperature of water and the container rises by $3^{\circ} \mathrm{K}$ in 15 min . The container is then emptied, dried and filled with 2 kg of oil. The same heater now raises the temperature of container-oil system by $2^{\circ} \mathrm{K}$ in 20 min . Assuming that there is no heat loss in the process and the specific heat of water is $4200 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$, the specific heat of oil in the same unit is equal to
A. 1.50×10^{3}
B. 2.55×10^{3}
C. 3.00×10^{3}
D. 5.10×10^{3}

Answer
31. A heating element of resistance r is fitted inside an adiabatic cylinder which carries a frictionless piston of mass m and cross-section A as shown in diagram. The cylinder contains one mole of an ideal diatomic gas. The piston current flows through the element such that the temperatures rises with time t as $\Delta T=\alpha t+12 \beta t^{2} ?(\alpha$ and β are constants), while pressure remains constant. The atmospheric pressure above the piston is P_{0}. Then

A. he rate of increase in internal energy is $52 \mathrm{R} \alpha+\beta$ t
B. the current flowing in the element is $52 r \mathrm{R} \alpha+\beta t$
C. the piston moves upwards with constant acceleration
D. the piston moves upwards with constant speed

Answer
32. Three capacitors $3 \mu \mathrm{~F}, 6 \mu \mathrm{~F}$ and $6 \mu \mathrm{~F}$ are connected in series to a source of 120 V . The potential difference, in volt, across the $3 \mu \mathrm{~F}$ capacitor will be
A. 24
B. 30

Like. Share. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com

AnswStudy, Assignments, Solved Previous Year Papers. Questions and Answers. Free Forever.
33. A galvanometer having internal resistance 10Ω requires 0.01 A for a full scale deflection. To convert this galvanometer to a voltmeter of full-scale deflection at 120 V , we need to connect a resistance of
A. 11990Ω in series
B. 11990Ω in parallel
C. 12010Ω in series
D. 12010Ω in parallel

Answer

34. A parallel plate capacitor is charged and then disconnected from the charging battery. If the plates are now moved farther apart by pulling at them by means of insulating handles, then
A. the energy stored in the capacitor decreases
B. the capacitance of the capacitor increases
C. the charge on the capacitor decreases
D. the voltage across the capacitor increases

Answer
35. An electron in a circular orbit ofradius 0.05 nm performs 10^{16} revolutions per second. The magnetic moment due to this rotation of electron is (in Am^{2})
A. 2.16×10^{-23}
B. 3.21×10^{-22}
C. 3.21×10^{-24}
D. 1.26×10^{-23}

Answer
36. A very small circular loop of radius a is initially (at $t=0$) coplanar and concentric with a much larger fixed circular loop of radius b. A constant current I flows in the larger loop. The smaller loop is rotated with a constant angular speed ω about the common diameter. The emf induced in the smaller loop as a function of time t is
A. $\pi a 2 \mu 012 b \omega \cos (\omega t)$
B. $\pi a 2 \mu 012 b \omega \sin \omega 2 t 2$
C. $\pi a 2 \mu 012 b \omega \sin \omega t$
D. $\pi a 2 \mu 012 b \omega \sin 2 \omega t$

Answer
37. An infinite sheet carrying a uniform surface charge density σ lies on the xy-plane. The work done to carry a charge q from the point $A=a\left(i^{\wedge}+2 j^{\wedge}+3 k^{\wedge}\right)$ to the point $B=a\left(i^{\wedge}-\right.$ $2 \mathrm{i}^{\wedge}+6 \mathrm{~K}^{\wedge}$) (where a is a constant with the dimension of length and ε_{0} is the permittivity of free sikaces shase. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com

Stufiva Assignments, Solved Previous Year Papers. Questions and Answers. Free Forever.
D. 3бaqع0

Answer
38. The intensity of magnetization of a bar magnet is $5.0 \times 10^{4} \mathrm{Am}^{-1}$. The magnetic length and the area of cross section of the magnet are 12 cm and $1 \mathrm{~cm}^{2}$ respectively. The magnitude of magnetic moment of this bar magnet is (in SI unit)
A. 0.6
B. 1.3
C. 1.24
D. 2.4

Answer
39. A proton of mass m and charge q is moving in a plane with kinetic energy E. If there exists a uniform magnetic field B, perpendicular to the plane of the motion, the proton will move in a circular path of radius
A. $2 E m q B$
B. $2 E m q B$
C. $E m 2 q B$
D. $2 E q m B$ Answer
40. In which of the following phenomena, the heat waves travel along straight lines with the speed of light?
A. Thermal conduction
B. Forced convection
C. Natural convection
D. Thermal radiation

Answer
41. In the circuit shown assume the diode to be ideal. When V_{i} increases from 2 V to 6 V , the change in the current is (in mA)

A. zero
B. 20
C. $80 / 3$
charge q and the inner one is grounded, the charge on the inner shell is
A. Atr $_{2}$ Assignments, Solved Previous Year Papers. Questions and Answers. Free Forever.
B. zero
C. $-r 1 r 2 q$
D. -q

Answer
43. Four cells, each of emf E and internal resistance r, are connected in series across an external resistance R. By mistake one of the cells is connected in reverse. Then the current in the external circuit is
A. $2 E 4 r+R$
B. $3 E 4 r+R$
C. $3 E 3 r+R$
D. $2 E 3 r+R$

Answer
44. The energy of gamma (γ) ray photon is E_{γ} and that of an X-ray photon is E_{x}. If the visible light photon has an energy of E_{v}, then we can say that
A. $E_{x}>E_{v}>E_{v}$
B. $E_{v}>E_{v}>E_{x}$
C. $E_{v}>E_{x}>E_{v}$
D. $E_{x}>E_{v}>E_{y}$

Answer
45. A long conducting wire carrying a current I is bent at 120° (see figure). The magnetic field B at a point P on the right bisector of bending angle at a distance d from the bend is (μ_{0} is the permeability of free space)

A. $3 \mu 012 \pi d$
B. $\mu 012 \pi d$
C. $\mu 013 \pi d$
D. $3 \mu 012 \pi d$

Answer
46. A circuit consists of three batteries of emf $E_{1}=1 \mathrm{~V}, \mathrm{E}_{2}=2 \mathrm{~V}$ and $\mathrm{E}_{3}=3 \mathrm{~V}$ and internal Like. Share. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com

The potential differente between points P and Q is

A. 1.0 V
B. 2.0 V
C. 2.2 V
D. 3.0 V

Answer
47. Half of the space between the plates of a parallel-plate capacitor is filled with a dielectric material of dielectric constant K. The remaining half contains air as shown in the figure. The capacitor is now given a charge Q . Then
A. electric field in the dielectric-filled region is higher than that in the air-filled region.
B. on the two halves of the bottom plate the charge densities are unequal.
C. charge on the half of the top plate above the air-filled pant is $\mathrm{QK}+1$
D. capacitance of the capacitor shown above is $1+K C 02$, where C_{0} is the capacitance of the same capacitor with the dielectric removed.

Answer
48. A stream of electrons and protons are directed towards a narrow slit in a screen (see figure). The intervening region has a uniform electric field E (vertically downwards) and a uniform magnetic field B (out of the plane of the figure) as shown. Then

A. electrons and protons with speed EB will pass through the slit
B. protons with speed EB will pass through the slit, electron of the same speed will not
C. neither electrons nor protons will go through the slit irrespective of their speed
D. electrons will always be deflected upwards irrespective of their speed

Answer
49. The output Y ofthe logic circuit given below is

Like. Share. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com

Physics AEEETB2014	zigya	$\begin{gathered} \text { Exam Year } \\ 2014 \end{gathered}$

Study y_{\neq}Assignments, Solved Previous Year Papers. Questions and Answers. Free Forever.
D. $A^{-}+B^{-} \cdot A$

Answer
50. The ionization energy of hydrogen is 13.6 eV . The energy of the photon released when an electron jumps from the first excited state $(\mathrm{n}=2)$ to the ground state of a hydrogen atom is
A. 3.4 eV
B. 4.53 eV
C. 10.2 eV
D. 13.6 eV

Answer
51. A luminous object is separated from a screen by distance d. A convex lens is placed between the object and the screen such that it forms a distinct image on the screen. The maximum possible focal length of this convex lens is
A. 4 d
B. 2 d
C. d 2
D. d 4

Answer
52. In the bandgap between valence band and conduction band in a material is 5.0 eV , then the material is
A. semiconductor
B. good conductor
C. superconductor
D. insulator Answer
53. Two coherent monochromatic beams of intensities I and 41 respectively are superposed. The maximum and minimum intensities in the resulting pattern are
A. 51 and 31
B. 91 and 31
C. 41 and I
D. 91 and 1 Answer
54. In a transistor output characteristics commonly used in common emitter configuration, the base current I_{B}, the collector current I_{C} and the collector emitter voltage $\mathrm{V}_{C E}$ have values of the following orders of magnitude in the active region
A. I_{B} and I_{C} both are in μA and $V_{C E}$ in volt
B. I_{B} is in μA and I_{C} is in mA and $V_{C E}$ in volt

Like. Share. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com

Exam Year

2014
D. I_{B} is in mA and T_{C} is in $m A$ and $V_{C E}$ in mV

Study, Assignments, Solved Previous Year Papers. Questions and Answers. Free Forever. Answer
55. For the radioactive nuclei that undergo either α or β decay, which one of the following cannot occur ?
A. Isobar of original nucleus is produced
B. Isotope of the original nucleus is produced
C. Nuclei with higher atomic number than that of the original nucleus is produced
D. Nuclei with lower atomic number than that of the original nucleus is produced Answer
56. The intermediate image formed by the objective of a compound microscope is
A. real, inverted and magnified
B. real, erect and magnified
C. virtual, erect and magnified
D. virtual, inverted and magnified

Answer
57. The de-Broglie wavelength of an electron is the same as that of a 50 keV X -ray photon. The ratio of the energy of the photon to the kinetic energy of the electron is (the energy equivalent of electron mass is 0.5 MeV)
A. 1:50
B. $1: 20$
C. $20: 1$
D. $50: 1$

Answer
58. A glass slab consists of thin uniform layers of progressively decreasing refractive indices RI (see figure) such that the RI of any layer is $\mu-\mathrm{m} \Delta \mu$. Here, μ and $\Delta \mu$ denote the RI of 0 th layer and the difference in RI between any two consecutive layers, respectively. The integer $m=0,1,2,3$, ... denotes the numbers of the successive layers. A ray of light from the 0th layer enters the 1st layer at an angle of incidence of 30°. After undergoing the mth refraction, the ray emerges parallel to the interface. If $\mu=1.5$ and $\Delta \mu=0.015$, the value of m is

Like. Share. Bclokmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com

Physics ANECT 2014 B. 30	ZIgYO

Sturdy, Assignments, Solved Previous Year Papers . Questions and Answers. Free Forever.
D. 50

Answer
59. An object is placed 30 cm away from a convex lens of focal length 10 cm and a sharp image is formed on a screen. Now a concave lens is placed in contact with the convex lens. The screen now has to be moved by 45 cm to get a sharp image again. The magnitude of focal length of the concave lens is (in cm)
A. 72
B. 60
C. 36
D. 20

Answer
60. Find the correct statement(s) about photoelectric effect.
A. There is no significant time delay between the absorption of a suitable radiation and the emission of electrons.
B. Einstein analysis gives a threshold frequency above which no electron can be emitted
C. The maximum kinetic energy of the emitted photoelectrons is proportional to the frequency of incident radiation.
D. The maximum kinetic energy of electrons does not depend on the intensity of radiation.

Answer

Like. Share. Bookmark. Download. Make Notes. Print - Your Favourite Questions. Join www.zigya.com

