Let P be any point on the ellipse  with the two foci atÂ
 andÂ
 Verify thatÂ
Let point P be (x, y). Focus  is (-c, 0), Â
 is (c, 0)
           Â
∴    Â
Now, Â Â Â Â Â
But, Â Â Â Â Â Â Â Â Â Â Â Â Â
∴               Â
∴  Â
 Â
  Â
Hence, , which verifies the ellipse property,Â
For ellipse  verifyÂ
 whereÂ
 andÂ
 be the foci of the ellipse and P is any point on it.
In the following, find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.
In the following, find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.
In the following, find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.