If a tangent having slope of - 43 to the ellipse x

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

361.

If line y = 2x + c is a normal to the ellipse x29 + y216 = 1 ,then

  • c = 23

  • 735

  • c = 1473

  • 57


362.

The minimum area of the triangle formed by any tangent to the ellipse ( x2/a2 ) + ( y2/b2 ) = 1 with the coordinate axes is

  • a2 + b2

  • ( a + b )2/2

  • ab

  • ( a - b )2/2


363.

If the line lx + my - n = 0 will be a normal to the hyperbola, then a2l2 - b2m2 = a2 + b22k, where k is equal to

  • n

  • n2

  • n3

  • None of these


364.

Equation of the chord of the hyperbola 25x2  - 16y2 = 400 which is bisected at the point (6, 2), is

  • 6x - 7y = 418

  • 75x - 16y = 418

  • 25x - 4y = 400

  • None of these


Advertisement
365.

The centres of a set of circles, each of radius 3, lie on the circles x2 + y2 = 25. the locus of any point in the set is

  • 4  x2 +_y2  64

  • x2 + y2  25

  • x2 + y2  25

  • 3  x2 + y2  9


366.

The angle of intersection of the circles x2 + y2 - x + y - 8 = 0 and x2 + y2 + 2x + 2y - 11 = 0 is

  • tan-1199

  • tan-119

  • tan-1919

  • tan-19


Advertisement

367.

If a tangent having slope of - 43 to the ellipse x218 + y232 = 1 intersects the major and minor axes in points A and B respectively, then the area of OAB is equal to (O is centre of the ellipse)

  • 12 sq units

  • 48 sq units

  • 64 sq units

  • 24 sq units


D.

24 sq units

Let P(x1, y1) be a point on the ellipse.

       x218 + y232 = 1 x2218 + y1232 = 1      ...(i)

The equation of the tangent at (x1, y1) is xx118 + yy132 = 1. This meets the axes at A18x1, 0 and B0, 32y1. It is given that slope of the tangent at (x1, y1) is - 34

Hence, - x118 . 32y1 = - 43                     x1y1 = 34                     x13 = y14 = K                       x1 = 3K                           y1 = 4KPutting x1 , y1 in (i), we get                           K2 = 1Now, area of OAB = 12 OA . OB                                 = 12 . 18x1 . 32y1                                 = 12 18323K4K                                = 24K2                                = 24 sq units.               K2 = 1


Advertisement
368.

The locus of mid-points of tangents intercepted between the axes of ellipse x2a2 + y2b2 = 1 will be

  • a2x2 + b2y2 = 1

  • a2x2 + b2y2 = 2

  • a2x2 + b2y2 = 3

  • a2x2 + b2y2 = 4


Advertisement
369.

If PQ is a double ordinate of hyperbola (x2/a2) - (y2/b2) = 1 such that OPQ is a equilateral triangle, O being the centre of the hyperbola, then the eccentricity 'e' of the hyperbola satisfies

  • 1 < e < 2/√3

  • e = 2/√3

  • e = √3/2

  • e > 2/√3


370.

The lines 2x - 3y - 5 = 0 and 3x - 4y = 7 are diameters of a circle of area 154 sq units, then the equation of the circle is

  • x2 + y2 + 2x - 2y - 62 = 0

  • x2 + y2 + 2x - 2y - 47 = 0

  • x2 + y2 - 2x + 2y - 47 = 0

  • x2 + y2 - 2x + 2y - 62 = 0


Advertisement