The equation of the tangents of hyperbola 3x2 - 4y2 = 12 which cu

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

411.

The eccentricity of the ellipse 4x2 + 9y2 + 8x + 36y + 4 = 0 is

  • 56

  • 35

  • 23

  • 53


412.

The equation of a circle passing through the vertex and the extremities of the latusrectum of the parabola y2 = 8x, is

  • x2 + y2 + 10x = 0

  • x2 + y2 + 10y = 0

  • x2 + y2 - 10x = 0

  • x2 + y2 - 5x = 0


413.

The distance between the directrices of a rectangular hyperbola x2 - y2 = a2 is 10 units, then distance between its foci is

  • 102

  • 5

  • 52

  • 20


Advertisement

414.

The equation of the tangents of hyperbola 3x2 - 4y2 = 12 which cuts equal intercepts from both the axes, are

  • y + x = ± 1

  • x - y = ± 1

  • y - x = ± 1

  • 4y - 3x = 0


C.

y - x = ± 1

Given equation of hyperbola isx24 - y23 = 1The equation of tangent at P(h, k) ishx4 - ky3 = 1The intercept on X-axis = 4hThe intercept on Y-axis = - 3kAccording to the question4h = - 3k  4k = - 3h       ...iPoint (h, k) lies on the hyperbola.          3h2 - 4k2 = 12 316k29 - 4k2 = 12  from Eq. (i) 16k2 - 12k2 = 12 × 3                  k2 = 3 × 3                    k = ± 3Onputting this value of k in Eq. (i), we get ± 12 = - 3h  h =  4Therefore, equations of tangents arey - x = ± 1


Advertisement
Advertisement
415.

Equation of the tangent to the hyperbola 2x2 - 3y2 = 6. Which is parallel to the line y - 3x - 4 = 0 is

  • y = 3x + 8

  • y = 3x - 8

  • y = 3x + 2

  • None of these


416.

The equation of circle which touches the axes and the line and whose centre lies inthe first quadrant is x2 + y2 - 2cx - 2cy + c2 = 0. Then, c is equal to

  • 1

  • 2

  • 3

  • 6


417.

The equation of the parabola having the focus at the point (3, - 1) and the vertex at (2, - 1)is

  • y2 - 4x - 2y + 9 = 0

  • y2 + 4x + 2y - 9 = 0

  • y2 - 4x + 2y + 9 = 0

  • y2 + 4x - 2y + 9 = 0


418.

Find the equation of tangents to the ellipse x2a2 + y2b2 = 1 which cut off equal intercepts on the axes.

  • y = 3x ± 3a2 + b2

  • y = ± x  a2 + b2

  • y = 3x ± a2 + 3b2

  • None of the above


Advertisement
419.

The locus ofthe point of intersection of the lines xcosα + ysinα = p and xsinα - ycosα = q (α is a variable) will be

  • a circle

  • a staright line

  • a parabola

  • an ellipse


420.

The locus of the mid points of the chords of a circle which subtend a right angle at its centre (equation ofthe circle is x2 + y2 = a2)will be

  • x2 + y2 = 3a2

  • x2 + y2a23

  • 2(x2 + y2) = a2

  • 4(x2 + y2) = a2


Advertisement