The number of common tangents that can be drawn to the circles x2

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement

431.

The number of common tangents that can be drawn to the circles x2 + y2 - 4x - 6y - 3 = 0 and x2 + y2 + 2x + 2y + 1 = 0 is

  • 1

  • 2

  • 3

  • 4


C.

3

Given circles are

          x2 + y2 - 4x - 6y - 3 = 0      ...(i)

and x2 + y2 + 2x + 2y + 1 = 0       ...(ii)

For circle (i), g1 = - 2, f1 = - 3, c1 = - 3

 Centre C12, 3 and r1 = 4 + 9 + 3 = 4and for circle (ii), g2 = 1, f2 = 1, c2 = 1 Centre C2- 1, - 1 and r2 = 1 + 1 - 1 = 1Now, C1C2 = 2 + 12 + 3 + 12                  = 9 + 16 = 5and r1 + r2 = 4 + 1 = 5So,    C1C2 = r1 + r2

Thus, both the circles touch each other externally.

Hence, number of common tangents = 3


Advertisement
432.

If two circles (x - 1)2 + (y - 3)2 = r2 and x2 + y2 - 8x + 2y + 8 = 0 intersect in two distinct points, then

  • 2 < r < 8

  • r < 2

  • r = 2

  • r > 2


433.

The equation of the tangent at the vertex of the parabola x2 + 4x + 2y = 0, is

  • x = - 2

  • x = 2

  • y = - 2

  • y = 2


434.

The distance between the directrices of the ellipse x24 + y29 = 1 is

  • 95

  • 185

  • 245

  • None of these


Advertisement
435.

The equation of the normal to the hyperbola x2 - 16y2 - 2x - 64y - 72 = 0 at the point (- 4, - 3) is

  • 5x + 16y + 79 = 0

  • 16x + 5y + 97 = 0

  • 16x + 5y + 79 = 0

  • 5x + 16y + 97 = 0


436.

The centre of the circle which circumscribes the square formed by x2 - 8x + 12 = 0 and y2 - 14y + 45 = 0 is

  • (4, 5)

  • (3, 4)

  • (9, 5)

  • (4, 7)


437.

If e1 and e2 are the eccentricities of the hyperbolas x2a2 - y2b2 = 1 and x2a2 - y2b2 = - 1, then the value of 1e12 + 1e22 is

  • 3

  • 2

  • 1

  • 12


438.

The point of contact of 3x + 4y + 7 = 0 and x2 + y2 - 4x - 6y -12 = 0 is

  • (1, 1)

  • (- 1, 1)

  • (1, - 1)

  • ( -1, - 1)


Advertisement
439.

The equation x2 - 7xy + 12y2 = 0 represents a

  • circle

  • pair of parallel straight lines

  • pair of perpendicular straight lines

  • pair of non-perpendicular straight lines


440.

The locus of z given by z - 1z +1 = 1 is

  • a parabola

  • an ellipse

  • a circle

  • a straight line


Advertisement