The area (in sq units) of the equilateral triangle formed by the

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

551.

Equation of one of the tangents passing through(2, 8) to the hyperbola 5x2 - y2 = 5 is

  • 3x + y - 14 = 0

  • 3x - y + 2 = 0

  • x + y + 3 = 0

  • x - y + 6 = 0


Advertisement

552.

The area (in sq units) of the equilateral triangle formed by the tangent at (3, 0) to the hyperbola x2 - 3y2 = 3 with the pair of asymptotes of the hyperbola is

  • 2

  • 3

  • 13

  • 23


B.

3

Given equation of hyperbola is x2 - 3y2 = 3 Equation of tangent at point 3, 0 isS1 = 0 x3 - 3y × 0 = 3 x3 = 3 x = 3   . . . iThe asympotes of given hyperbolas arex + 3y = 0           . . . iiand x - 3y = 0   . . . iiiOn solving eqs i, ii and iii,  we get0, 0, 3, - 1 and 3, 1Area of triangle formed by joining the above points= 120013- 10310= 1213 + 3 = 12 × 23 = 3


Advertisement
553.

The radius of the circle r = 12cosθ + 5sinθ IS

  • 512

  • 172

  • 152

  • None of these


554.

If  is the area of the triangle formed by the positive x-axis and the normal and tangent to the circle x+ y2 = 4 at (1, 3) then is equal to

  • 32

  • 3

  • 23

  • 6


Advertisement

 Multiple Choice QuestionsMatch The Following

555.

Given the circle C with the equation x+ y2 - 2x + 10y - 38 = 0. Match the List I with the List II given below concerning C
  List I   List II
A The equation of the polar of (4, 3)with respect to C I y + 5 = 0
B The equation of the tangent at (9, - 5) on C II x = 1
C The equation of  the normal at(- 7, - 5) on C III 3x + 8y = 27
D The equation of the diameter of  C passing through (1,3) IV x + y = 3
    V x = 9

The correct answer is

A. A B C D (i) III I V II
B. A B C D (ii) IV V I II
C. A B C D (iii) III V I II
D. A B C D (iv) IV II I V

556.

For the circle C with the equation x2 + y2 - 16 - 12y + 64 = 0 match the List I with the List II given below.
  List I   List II
(i) The equation of the polar of (- 5, 1) with respect to  (A) y = 0
(ii) The equation of the tangent at (8, 0) to C (B) y = 6
(iii) The equation of the normal at (2, 6) to C (C) 13x + 5y = 98
(iv) The equation of the diameter of C through (8, 12) (D) 13x + 5y = 98
    (E) x = 6

The correct match is

A. (i) (ii) (iii) (iv) (i) (D) (B) (A) (E)
B. (i) (ii) (iii) (iv) (ii) (D) (A) (B) (E)
C. (i) (ii) (iii) (iv) (iii) (C) (D) (A) (B)
D. (i) (ii) (iii) (iv) (iv) (C) (E) (B) (A)

 Multiple Choice QuestionsMultiple Choice Questions

557.

The circle 4x2 + 4y2 - 12x - 12y + 9 = 0

  • Touches both the axes

  • Touches the x-axis only

  • Touches the y-axis only

  • Does not touch the axes


558.

If the length of the tangent from (h, k) to the circle x2 + y2 = 16 is twice the length of the tangent from the same point to the circle x2 + y2 + 2x + 2y = 0, then

  • h2 + k2 + 4h + 4k + 16 = 0

  • h2 + k2 + 3h + 3k = 0

  • 3h2 + 3k2 + 8h + 8k + 16 = 0

  • 3h2 + 3k2 + 4h + 4k + 16 = 0


Advertisement
559.

(α, 0) and (b, 0) are centres of two circles belonging to a coaxial system of which y-axis is the radical axis. If radius of one of the circles is 'r', then the radius of the other circle is

  • r2 + b2 + a212

  • r2 + b2 - a212

  • r2 + b2 - a213

  • r2 + b2 + a213


560.

If the circle x2 + y+ 4x - 6y + c =0 bisects the circumference of the circle x2 + y2 - 6x + 4y - 12 = 0, then c is equal to

  • 16

  • 24

  • - 42

  • - 62


Advertisement