Important Questions of Differential Equations Mathematics | Zigya

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement
441.

The solution of the differential equation dydx = yx + ϕyxϕ'yx is

  • yx = k

  • ϕyx = kx

  • yx = k

  • ϕyx = ky


442.

If the integrating factor of the differential equation dydx + Pxy = Qx is x, then P(x) is

  • x

  • x2/2

  • 1/x

  • 1/x2


443.

If c1, c2, c3, c4, c5 and c6  are constants, then the order of the differential equation whose general solution is given by y = c1 cos(x + c2) + c3 sin(x + c4) + c5ex + c6, is

  • 6

  • 5

  • 4

  • 3


444.

y = 2e2x - e- x is solution of the differential equation

  • y2 + y1 + 2y = 0

  • y2 - y1 + 2y = 0

  • y2 + y1 = 0

  • y2 - y1 - 2y = 0


Advertisement
445.

If xdy = y(dx + y dy), y(1) = 1 and y(x) > 0, then y(- 3) is equal to

  • 3

  • 2

  • 1

  • 0


446.

The differential equation representing the family of curves y = 2c (x + c3), where c is a positive parameter, is of

  • order 1, degree 1

  • order 1, degree 2

  • order 1, degree 3

  • order 1, degree 4


447.

The differential equation representing the family of curves y = xecx (c is a constant) is

  • dydx = yx1 - logyx

  • dydx = yxlogyx + 1

  • dydx = yx1 + logyx

  • dydx +1 = yxlogyx


448.

The solution of dydx = 1 + y + y2 + x + xy + xy2 is

  • tan-12y + 13 = x + xy + xy2

  • 4tan-12y + 13 = 322x + x2

  • 3tan-13y + 13 = 41 +x +x2 + c

  • tan-12y + 13 = 32x + x2 + c


Advertisement
449.

The integrating factor of the differential equation

dydx + y1 - xx = 1 - x is

  • 1 - x1 + x

  • 1 + x1 - x

  • 1 - x1 +x

  • x1 - x


450.

The solution of cosydydx = ex + siny + x2esiny is

  •  ex - e- siny+ x33 = c

  •  e- x - e- siny+ x33 = c

  •  ex + e- siny+ x33 = c

  •  ex - esiny+ x33 = c


Advertisement