Important Questions of Differential Equations Mathematics | Zigya

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement
511.

An integrating factor of the differential equation, (1 + y + x2y)dx + (x + x3)dy = 0 is :

  • logx

  • x

  • ex

  • 1x


512.

Let y = y(x) be the solution of the differential equation, x2 + 1dydx + 2xx2 + 1y = 1 such that y(0) = 0. If ay1 = π32, then the value of 'a' is :

  • 14

  • 1

  • 116

  • 12


513.

The solution of the differential equation xdydx + 2y = x2, (x  0) with y(1)  = 1, is :

  • y = 45x3 + 15x2

  • y = 34x3 + 14x2

  • y = x24 + 34x2

  • y = x35 + 15x2


514.

If y = y(x) is the solution of the differential equation dydx = tanx - ysec2x, x  - π2, π2, such that y(0) = 0, then y- π4 is equal to

  • 2 + 1e

  • e - 2

  • 12 - e

  • 1e - 2


Advertisement
515.

Let y = y(x) be the solution of the differential equation dydx + ytanx = 2x +x2tanx, x  - π2, π2 such that if y(0) = 1, then

  • y'π4 - y'- π4 = π - 2

  • yπ4 - y- π4 = 2

  • yπ4 + y- π4 = π22 + 2

  • y'π4 + y'- π4 = - 2


516.

The solution of the differential equation dxx + dyy = 0 is

  • xy = c

  • x + y = c

  • log(x)log(y) = c

  • x2 + y2 = c


517.

The differential equation obtained by eliminating arbitrary constants from y = a . ebx, is

  • yd2ydx2 + dydx = 0

  • yd2ydx2 - dydx = 0

  • yd2ydx2 - dydx2 = 0

  • yd2ydx2 + dydx2 = 0


518.

f(x) is a polynomial of degree 2, f(0) = 4, f'(0) = 3 and f''(0) = 4, then f(- 1) is equal to

  • 3

  • - 2

  • 2

  • - 3


Advertisement
519.

Solution of differential equation sec(x)dy - cosec(y)dx = 0 is

  • cos(x) + sin(y) = c

  • sin(x) + cos(y) = 0

  • sin(y) - cos(x) = c

  • cos(y) - sin(x) = c


520.

The point P(9/2, 6) lies on the parabola y2 = 4ax, then parameter of the point P is

  • 3a2

  • 23a

  • 23

  • 32


Advertisement