Solve the following differential equation:             f

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

101. Find a one-parameter family of solutions of the following differential equation, indicating carefully the interval in which the solutions are valid:
straight e to the power of straight y dx plus straight e to the power of straight x dy space equals space 0




85 Views

102. Find a one-parameter family of solutions of the following differential equation, indicating carefully the interval in which the solutions are valid:
left parenthesis sinx plus cosx right parenthesis space dy space equals space left parenthesis cosx minus sinx right parenthesis space dx





92 Views

103. Find a one-parameter family of solutions of the following differential equation, indicating carefully the interval in which the solutions are valid:
straight y apostrophe space equals left parenthesis 1 plus straight x squared right parenthesis thin space left parenthesis 1 plus straight y squared right parenthesis






88 Views

104. Find a one-parameter family of solutions of the following differential equation, indicating carefully the interval in which the solutions are valid:
left parenthesis straight e to the power of straight x plus straight e to the power of straight x right parenthesis space dy space minus space left parenthesis straight e to the power of straight x minus straight e to the power of straight x right parenthesis space dx space equals space 0







100 Views

Advertisement
105.

Solve the differential equation
left parenthesis tan squared straight x plus 2 space tanx space plus 5 right parenthesis space dy over dx space equals space 2 left parenthesis 1 plus tanx right parenthesis space sec squared straight x.

85 Views

106. Solve the following differential equation:
x cos y dy = (x ex log x + ex) dx.
92 Views

107. Solve the following differential equation:
dy over dx space equals space log space left parenthesis straight x plus 1 right parenthesis

88 Views

108. Solve the following differential equation:
            left parenthesis straight y plus straight x space straight y right parenthesis space dx space plus space left parenthesis straight x minus straight x space straight y squared right parenthesis space dy space equals space 0


86 Views

Advertisement
Advertisement

109. Solve the following differential equation:
left parenthesis 1 minus straight x squared right parenthesis space dy space plus space straight x space straight y space dx space equals space straight x space straight y squared space dx.
            



The given differential equation is
                     left parenthesis 1 minus straight x squared right parenthesis space dy space plus space straight x space straight y space dx space equals space straight x space straight y squared space dx
or                  left parenthesis 1 minus straight x squared right parenthesis space dy space equals space left parenthesis xy squared minus straight x space straight y right parenthesis space dx space space space space space space space or space space space left parenthesis 1 minus straight x squared right parenthesis space dy space equals space straight x space left parenthesis straight y squared minus straight y right parenthesis space dx
or                 fraction numerator 1 over denominator straight y squared minus straight y end fraction dy space equals space fraction numerator straight x over denominator 1 minus straight x squared end fraction dx
therefore space space space space space integral fraction numerator 1 over denominator straight y squared minus straight y end fraction dy space equals space integral fraction numerator straight x over denominator 1 minus straight x squared end fraction dx
therefore space space space space integral fraction numerator 1 over denominator straight y left parenthesis straight y minus 1 right parenthesis end fraction dy space equals space minus integral fraction numerator negative 2 straight x over denominator 1 minus straight x squared end fraction dx
therefore space space integral open square brackets fraction numerator 1 over denominator straight y left parenthesis 0 minus 1 right parenthesis end fraction plus fraction numerator 1 over denominator left parenthesis 1 right parenthesis space left parenthesis straight y minus 1 right parenthesis end fraction close square brackets space dy space equals space minus integral fraction numerator negative 2 straight x over denominator 1 minus straight x squared end fraction dx
therefore space integral open parentheses negative 1 over straight y plus fraction numerator 1 over denominator straight y minus 1 end fraction close parentheses space dy space equals negative integral fraction numerator negative 2 straight x over denominator 1 minus straight x squared end fraction dx
therefore space space space space minus log space open vertical bar straight y close vertical bar plus space log space open vertical bar straight y minus 1 close vertical bar space equals space minus space log space open vertical bar 1 minus straight x squared close vertical bar plus space log space straight c subscript 1
therefore space log space open vertical bar fraction numerator straight y minus 1 over denominator straight y end fraction close vertical bar plus space log space open vertical bar 1 minus straight x squared close vertical bar space equals space log space straight c subscript 1
therefore space log space open vertical bar open parentheses fraction numerator straight y minus 1 over denominator straight y end fraction close parentheses space left parenthesis 1 minus straight x squared right parenthesis close vertical bar space equals space log space straight c subscript 1 space space space space space space space space space therefore space space space space open vertical bar fraction numerator left parenthesis straight y minus 1 right parenthesis thin space left parenthesis 1 minus straight x squared right parenthesis over denominator straight y end fraction close vertical bar space equals space straight c subscript 1
therefore space space space space left parenthesis straight y minus 1 right parenthesis thin space left parenthesis 1 minus straight x squared right parenthesis space equals space straight c space straight y
94 Views

Advertisement
110. Solve the following differential equation:
dy over dx space equals space 1 plus straight x plus straight y plus xy comma space space straight y greater than 0

            


85 Views

Advertisement