Solve the following differential equation:(x2 − y2) dx + 2x

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsLong Answer Type

321.

Prove that x2 – y2 = c(x2 + y2)2 is the general solution of the differential equation (x3 – 3xy2)dx = (y3 – 3x2y) dy, where C is a parameter.

926 Views

 Multiple Choice QuestionsShort Answer Type

322.

Find the differential equation representing the family of curves y = aebx + 5 , where a and b are arbitrary constants.


323.

If y = sin (sin x), prove that d2 ydx2 + tan x dydx  + y cos2 x = 0


324.

Find the particular solution of the differential equation ex tan ydx + (2 -ex) sec2 ydy = 0, given that y  = π4 when x = 0


Advertisement
325.

Find the particular solution of the differential equation dydx + 2 y tan x  = sin x, given that y = 0 when x = π3


 Multiple Choice QuestionsLong Answer Type

326.

If (x2 + y2)2 = xy, find dydx


327.

If x =a (2θ - sin 2θ) and y = a(1- cos 2θ), finddydx when θ =π3


328.

Differentiate the following with respect of x:

y = tan-1 1 + x - 1 - x1 + x + 1 - x 


Advertisement
Advertisement

329.

Solve the following differential equation:
(x2 − y2) dx + 2xy dy = 0   given that y = 1 when x = 1


( x2 - y2 ) dx + 2xy dy = 0

 

dydx = y2 - x22xy          .........(1)

It is a homogeneous differential equation.

Let y = vx                ..........(2)

 

dydx = v + xdvdx        ...........(3)

 

Substituting (2) and (3) in (1), we get:

 

v + xdvdx = v2 x2 - x22x . vxv + xdvdx =  x2 (v2 - 1 )2vx2 = v2 - 12v2v2 + 2vx dvdx = v2 - 1 2vx dvdx = - v2 - 12vv2 + 1 dv = -dxx

 

Integrating both sides, we get:

 

2vv2 + 1 dv = -1x dxlog v2 + 1 = - log x + log Clog v2 + 1 =  log Cxv2 + 1 = Cxx ( v2 + 1 ) = C

 

x yx2 + 1 = C  y2 + x2 = Cx           .........(4)

 

It is given that when   x = 1,  y = 1

 

(1)2 + (2)2 =  C(1)

 

  C = 2

 

Thus, the required solution is  y2 + x2 = 2x.

 


Advertisement
330.

Solve the following differential equation:


dydx = x ( 2y - x )x ( 2y + x),   if y = 1 when x = 1


Advertisement