Let a and B be the roots of x2 + x + 1 = 0. If n be a positive in

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

351.

Let F(x)=ex, G(x)=e- x and H(x) = G(F(x)), where x is a real variable. Then, dHdx at x= 0 is

  • 1

  • - 1

  • - 1e

  • - e


352.

If f''(0) = k, k  0, then the value of limx0 2f(x) - 3f(2x) +f(4x)x2 is

  • k

  • 2k

  • 3k

  • 4k


353.

If  y = emsin- 1x then 1 - x2d2ydx2 - xdydx - ky = 0, where k is equal to

  • m2

  • 2

  • - 1

  • - m2


354.

Solution of x + y2dydx = a2 ( 'a' being a constant) is

  • x + ya = tany + Ca, C is an arbitrary

  • xy = atanCx, C is an arbitrary

  • xa = tanyC, C is an arbitrary

  • xy = tan(x + C), C is an arbitrary


Advertisement
355.

The integrating factor of the first order differential equation

x2x2 - 1dydx + xx2 + 1y = x2 - 1 is

  • ex

  • x - 1x

  • x + 1x

  • 1x2


Advertisement

356.

Let a and B be the roots of x2 + x + 1 = 0. If n be a positive integer, then αn + βn is

  • 2cos23

  • 2sin23

  • 2cos3

  • 2sin3


A.

2cos23

We have, x2 + x + 1 = 

 x = - 1 ± 3i2

 α = - 1 + 3i2 and β = - 1 - 3i2

or α = ei2π3 and β = e- i2π3

 αn + βn = ei2π3 + e- i2π3

                = 2ei2π3 + e- i2π32

                = 2cos23

 


Advertisement
357.

For real x, the greatest value of x2 + 2x + 42x2 + 4x + 9 is

  • 1

  • - 1

  • 12

  • 14


358.

If the solution of the differential equation xdydx + y = xex be xy = exϕ(x) + C, then ϕx is equal to

  • x + 1

  • x - 1

  • 1 - x

  • x


Advertisement
359.

The order of the differential equation of all parabolas whose axis of symmetry along X-axis is

  • 2

  • 3

  • 1

  • None of these


360.

General solution of ydydx + by2 = acosx, 0 < x < 1 is

  • y2 = 2a2bsinx + cosx + ce- 2bx

  • 4b2 + 1y2 = 2asinx + 2bcosx + ce- 2bx

  • 4b2 + 1y2 = 2asinx + 2bcosx + ce2bx

  • y2 = 2a2bsinx + cosx + ce- 2bx


Advertisement