The solution of the differential equation ydydx = 

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

361.

The integrating factor of the differential equation

1 + x2dydx + y = etan-1x is

  • tan-1x

  • 1 + x2

  • etan-1x

  • loge1 + x2


362.

If y = cos-1x, then it satisfies the differential equation

1 - x2d2ydx2 - xdydx = c, where c equal to 

  • 0

  • 3

  • 1

  • 2


Advertisement

363.

The solution of the differential equation ydydx = xy2x2 + ϕy2x2ϕ'y2x2 is (where, c is a constant)

  • ϕy2x2 = cx

  • y2x2 = c

  • ϕy2x2 = cx2

  • x2ϕy2x2 = c


C.

ϕy2x2 = cx2

Given differential equation can be rewritten as,

dydx = yx + y2x2'y2x2

Put y = vx

 dydx = v +xdvdx

 Given equation becomes, 

v + xdvdx = vxx + v2x2x2vxϕ'v2x2x2

 xdvdx = ϕv2v ϕ'v2 v ϕ'v2ϕv2dv = dxx

On integrating both sides, we get

  12logφv2 = logx + logc1 logφv2 = 2logxc1        φv2 = xc12     ϕy2x2 = x2c12     ϕy2x2 = x2c                put c12 = c


Advertisement
364.

The curve y = cosx + y1/2 satisfies the differential equation

  • 2y - 1d2ydx2 + 2dydx2 + cosx = 0

  • d2ydx2 + 2dydx2 + cosx = 0

  • 2y - 1d2ydx2 -  2dydx2 + cosx = 0

  • 2y - 1d2ydx2 - dydx2 + cosx = 0


Advertisement
365.

The solution of the differential equation

dydx + yxlogex = 1x

under the condition y = 1 when x = e is

  • 2y = logex +1logex

  • y = logex +2logex

  • ylogex = logex +1

  • y = logex +e


366.

If u(x) and u(x) are two independent solutions of the differential equation

d2ydx2 + b dydx + cy = 0,

then additional solution(s) of the given differential equation is(are)

  • y = 5u(x) + 8v(x)

  • y = c1{u(x) - v(x)} + c2v(x), c1 and c2 are arbitrary constants

  • y = c1u(x)v(x) + c2u(x)v(x), c1 and c2 are arbitrary constant

  • y = u(x)v(x)


367.

The solution of the differential equation y2 + 2xdydx = y satisfies x = 1, y = 1. Then, the solution is

  • x = y21 + logey

  • y = x21 + logex

  • x = y21 - logey

  • y = x21 + logex


368.

A family of curves is such that the length intercepted on the y-axis between the origin and the tangent at a point is three times the ordinate of the point of contact. The family of curves is

  • xy = C, C is a constant

  • xy2 = C, C is a constant

  • x2y = C, C is a constant

  • x2y2 = C, C is a constant


Advertisement
369.

The solution of the differential equation ysinxydx = xsinxy - ydy satisfying yπ4 = 1 is

  • cosxy = logey + 12

  • sinxy = logey + 12

  • sinxy = logex - 12

  • cosxy = - logex - 12


370.

The general solution of the differential equation

dydx = x +y +12x +2y +1 is

  • loge3x + 3y + 2 + 3x + 6y = C

  • loge3x + 3y + 2 - 3x + 6y = C

  • loge3x + 3y + 2 - 3x - 6y = C

  • loge3x + 3y + 2 + 3x - 6y = C


Advertisement