The differential equation representing the family of curves y2 =

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

471.

The solution of the differential equation (kx - y2 ) dy = (x2 - ky) dx is

  • x3 - y3 = 3kxy + C

  • x3 + y3 = 3kxy + C

  • x2 - y2 = 2kxy + C

  • x2 + y2 = 2kxy + C


472.

The solution of the differential equation dydx = ex + 1 is

  • y = e+ C

  • y = x + ex + C

  • y = xex + C

  • y = x(ex + 1) + C


473.

The order and degree of the differential equation d2ydx2 + dydx32 = y are respectively

  • 1, 1

  • 1, 2

  • 1, 3

  • 2, 2


474.

An integrating factor of the differential equation sinxdydx + 2ycosx = 1 is

  • sin2(x)

  • 2sinx

  • logsinx

  • 1sin2x


Advertisement
475.

If x2 + y2 = 1, then

  • yy'' + (y')2 + 1 = 0

  • yy'' +2 (y')2 + 1 = 0

  • yy'' - 2(y')2 + 1 = 0

  • yy'' + (y')2 - 1 = 0


476.

The solution of the differential equation y'(y2 - x) = y is

  • y3 - 3xy = C

  • y3 + 3xy = C

  • x3 - 3xy = C

  • y3 - xy = C


477.

The order and degree of the differential equation 2d2ydx2 + dydx232 = d3ydx3 are respectively

  • 2 and 2

  • 2 and 1

  • 3 and 2

  • 3 and 3


478.

The slope of a curve at any point (x, y) other than the origin, is y + yx. Then, the equation of the curve is

  • y = C xex

  • y = x(ex + C)

  • xy = Cex

  • y + xex = C


Advertisement
479.

The general solution of the differential equation x + y + 3dydx = 1 is

  • x + y + 3 = Cey

  • x + y + 4 = Cey

  • x + y + 3 = Cey

  • x + y + 4 = Cey


Advertisement

480.

The differential equation representing the family of curves y2 = a(ax + b), where a and b are arbitrary constants, is of

  • order 1, degree 1

  • order 1, degree 3

  • order 2, degree 3

  • order 2, degree 1


D.

order 2, degree 1

We have, y2 = a(ax + b)           y2 = a2x + abOn differentiating w.r.t. x, we get          2ydydx = a2       ydydx = a22 y . d2ydx2 + dydx . dydx = 0               y . y2 + y12 = 0

Hence, order and degree of the given equation is 2 and 1, respectively.


Advertisement
Advertisement