The solution of dy/dx + ytan(x) = sec(x), y(0) = 0 is from Mathe

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

481.

The solution of the differential equation xdydx - yx2 - y2 = 10x2 is

  • sin-1yx - 5x2 = C

  • sin-1yx = 10x2 + C

  • yx = 5x2 + C

  • sin-1yx = 10x2 + Cx


482.

The general solution of the differential equation xdy - ydx = y2dx is

  • y = xC - x

  • x = 2yC + x

  • y = C + x2x

  • y = 2xC + x


483.

The order of the differential equation d3ydx32 + d2ydx22 + dydx5 = 0 is

  • 3

  • 4

  • 1

  • 5


Advertisement

484.

The solution of dy/dx + ytan(x) = sec(x), y(0) = 0 is

  • ysec(x) = tan(x)

  • ytan(x) = sec(x)

  • tan(x) = ytan(x)

  • xsec(x) = tan(y)


A.

ysec(x) = tan(x)

We have,dydx + ytanx = secxwhich is a linear differential equation.       IF = etanxdx = elogsecx = secxy . secx = secx . secxdx + C   ysecx = tanx + C      ...iNow, y =0, when x =0,     0 = 0 +c       From Eq. (i)     c = 0Putting c = 0 in Eq. (i), we getysecx = tanx


Advertisement
Advertisement
485.

The differential equation for, which y = a cos(x) + b sin(x) is a solution, is :

  • d2ydx2 + y = 0

  • d2ydx2 - y = 0

  • d2ydx2 + a + by = 0

  • d2ydx2 = a + by


486.

The solution of dydx + Pxy = 0 is

  • y = cePdx

  • y = ce- Pdx

  • x = ce- Pdy

  • x = cePdy


487.

The differential equation of the family of lines passing through the origin is :

  • xdydx + y = 0

  • x + dydx = 0

  • dydx = y

  • xdydx - y = 0


488.

The solution of dydx + y = e- x; y(0) = 0 is :

  • y = e- x(x - 1)

  • y = xe- x

  • y = xe- x + 1

  • y = (x + 1)e-x


Advertisement
489.

The degree of the differential equation d2ydx2 + dydx3 + 6y = 0 is :

  • 1

  • 3

  • 2

  • 5


490.

The solution of the equation (2y - 1)dx - (2x + 3)dy = 0 is  :

  • 2x - 12y + 3 = c

  • 2x + 32y - 1 = c

  • 2x - 12y - 1 = c

  • 2y + 12x - 3 = c


Advertisement