The differential equation of all circles which pass through the o

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

531.

General solution of the differential equation 

dydx = x + y + 1x + y - 1 is given by

  • x + y = logx + y + c

  • x - y = logx + y + c

  • y = x + logx + y + c

  • y = xlogx + y + c


532.

The order and degree of the differential equation d2ydx2 = 1 - dydx43 are respectively

  • 2, 3

  • 3, 2

  • 2, 4

  • 2, 2


533.

Form the differential equation of all family of lines y = mx ± 4m eliminating the arbitrary m constant 'm' is

  • d2ydx2 = 0

  • xdydx - ydydx +4 = 0

  • xdydx2 + ydydx +4 = 0

  • dydx = 0


534.

The differential equation of family of circles whose centre lies on x-axis, is

  • d2ydx2 + dydx2 + 1 = 0

  • yd2ydx2 + dydx2 - 1 = 0

  • yd2ydx2 - dydx2 - 1 = 0

  • yd2ydx2 + dydx2 + 1 = 0


Advertisement
535.

The solution of the differential equation y1 + logxdydx - xlogx = 0 is

  • x log(x) = y + c

  • x log(x) = yc

  • y(1 + log(x) = c

  • log(x) - y = c


536.

The order of the differential equation whose solution is aex + be2x + ce3x + d = 0, is

  • 1

  • 2

  • 3

  • 4


Advertisement

537.

The differential equation of all circles which pass through the origin and whose centres lie on y-axis is

  • x2 - y2dydx - 2xy = 0

  • x2 - y2dydx + 2xy = 0

  • x2 - y2dydx - xy = 0

  • x2 - y2dydx + xy = 0


A.

x2 - y2dydx - 2xy = 0

Equation of a circle is             x2 + y - a2 = a2        ...i   2x + 2ydydx - 2adydx = 0          ...iiFrom Eqs. (i) and (ii),                               dydx = 2xyx2 - y2 x2 - y2dydx - 2xy = 0


Advertisement
538.

If m and n are order and degree of the equation

d2ydx25 + 4 . d2ydx23d3ydx3 + d3ydx3 = x2 - 1, then

 

  • m = 3, n = 3

  • m = 3, n = 2

  • m = 3, n = 5

  • m = 3, n = 1


Advertisement
539.

The integrating factor of the differential equation dydxxlogx + y = 2logx is iven by

  • ex

  • log(x)

  • log(log(x))

  • x


540.

The differential equation whose solution is (x - h)2 + (y - k)2 = a2 (a is a constant), is

  • 1+dydx23 = a2d2ydx2

  • 1+dydx23 = a2d2ydx22

  • 1+dydx3 = a2d2ydx22

  • None of these


Advertisement