The solution of the differential equationdydx + siny&nb

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

551.

The solution of the differential equation dydx = 2ex - y + x2e- y is

  • ey = 2ex + x33 + C

  • e- y = 2ex + x- 33 + C

  • e- y = 2ex + x33 + C

  • ey = 2e- x + x33 + C


552.

The solution of the differential equation x +2y3dydx = Y is

  • y3 + Cx = y

  • xy42 + xy = Cy

  • y3 + Cy = x

  • x + 2y3 = y + C


553.

The solution ofthe differential equation

dydx = ylogy - logx + 1x is

  • x = yecy

  • y = xecy

  • x = yecx

  • None of these


Advertisement

554.

The solution of the differential equationdydx + siny + x2 + siny - x2 = 0 is

  • logtany2 = C - 2sinx

  • logtany4 = C - 2sinx2

  • logtany2 + π4 = C - 2sinx

  • logtany2 + π4 = C - 2sinx2


B.

logtany4 = C - 2sinx2

Given, dydx + siny + x2 + siny - x2 = 0This differential equation can be rewritten asdydx = sinx - y2 + sinx + y2      = 2cosx2sin- y2      = - 2cosx2siny2

      dy2siny2 = - cosx2dx 12cscy2dy = - sinx212 + C 12logcscy2 - coty212 = - sinx212 + C                      logtany4 = C - 2sinx2


Advertisement
Advertisement
555.

The solution of differential equation x2 + y2 - 2xydydx = 0 is

  • x2 + y2 = xC

  • x2 - y2 = xC

  • x2 + y2 = C

  • x2 - y2 = C


556.

The solution of differential equation dydx = x2logx + 1siny + ycosy is

  • ysiny = x2logx + C

  • y = x2 + logx + C

  • ysiny = x2 + C

  • None of these


557.

Solution of 2ysinxdydx = 2sinxcosx - y2cosx, x = π2, y = 1 is given by

  • y2 = sin(x)

  • y = sin2(x)

  • y2 = cos(x) + 1

  • None of these


558.

Solution of x2dydx - xy = 1 +cosyx is

  • tany2x = C - 12x2

  • tanyx = C + 1x

  • cosyx = 1 + Cx

  • x2 = C + x2tanyx


Advertisement
559.

The solution of dydx = cosx2 - ycscx where y = 2, when x = π2 is

  • y = sinx + cscx

  • y = tanx2 + cotx2

  • y = 12secx2 + 2cosx2

  • None of the above


560.

The solution of the equation sin-1dydx = x + y is

  • tanx + y + secx + y = x + C

  • tanx + y - secx + y = x + C

  • tanx + y - secx + y + x + C = 0

  • None of the above


Advertisement