The solution of the differential equationdydx = 1 

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

561.

The solution of differential equation

4xydydx = 31 +x21 + y21 +x2 is

  • log1 + y = logx + 2tanx + C

  • log1 + y2 = 3log1x + 6tan-1x + C

  • log1 + y2 = 3logx + 6tan-1x + C

  • None of the above


562.

The order and power of differential equation

d2ydx2 + 7dydx + ydx = sinx is

  • 1, 3

  • 3, 1

  • 1, 2

  • 2, 1


563.

The solution of differential equation xcos2ydx = ycos2xdx is

  • xtanx - ytany - logsecx/secy = c

  • ytanx - xtanx - logsecx.secy = c

  • xtanx - ytany + logsecx.secy = c

  • None of the above


564.

Differential equation of those circles which passes through origin and their centres lie on y-axis will be

  • x2 - y2dydx +2xy = 0

  • x2 - y2dydx =2xy

  • x2 - y2dydx =xy

  • x2 - y2dydx +xy = 0


Advertisement
565.

The differential equation of all circles touching the axis of y at origin and centre on the x-axis is given by

  • xydydx - x2 + y2 = 0

  • 2xydydx - x2 - y2 = 0

  • x2 + y2dydx - 2xy = 0

  • None of these


566.

The solution of the differential equation

e- 2x - yxdxdy = 1 is given by

  • e2x = 2x + c

  • ye- 2x = x + c

  • y = x

  • None of these


Advertisement

567.

The solution of the differential equation

dydx = 1 - y21 - x2 is

  • sin-1y - sin-1x = c

  • sin-1y + sin-1x = c

  • sin-1xy = 2

  • None of these


A.

sin-1y - sin-1x = c

Given, dydx = 1 - y21 - x2dy1 - y2 = dx1 - x2On integrating both sides, we getsin-1y - sin-1x = c


Advertisement
568.

The solution of differential equation (1 + x)ydx + (1 - y)x dy = 0 is

  • logexy + x - y = c

  • logexy + x + y = c

  • logexy - x + y = c

  • logexy - x + y = c


Advertisement
569.

The differential equation of all circles which passes through the origin and whose centre lies on y-axis is

  • x2 - y2dydx - 2xy = 0

  • x2 - y2dydx + 2xy = 0

  • x2 - y2dydx - xy = 0

  • x2 - y2dydx + xy = 0


570.

The general solution of y2dx + (x2 - xy + y2)dy = 0 is

  • tan-1xy + logy + c = 0

  • 2tan-1xy + logx + c = 0

  • logy + x2 + y2 + logy + c = 0

  • sinh-1xy + logy + c = 0


Advertisement