The integrating factor of the differential equation dydx&nbs

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

571.

The solution of the equation d2ydx2 = e- 2x is

  • y = 14e- 2x + cx2 +d

  • y = 14e- 2x + cx +d

  • y = 14e- 2x + cx2 +d

  • y = 14e- 2x + cx3 +d


572.

The solution of the differential equation dydx = y tanx - 2 sinx, is

  • y sinx = c + sin2x

  • y cosx = c + 12sin2x

  • y cosx = c - sin2x

  • y cosx = c + 12cos2x


573.

The differential equation of system of concentric circles with centre (1, 2) is :

  • x - 2 + y - 1dydx = 0

  • x - 1 + y - 2dydx = 0

  • x + 1dydx + y - 2 = 0

  • x + 2dydx + y - 1 = 0


574.

The solution of the differential equation dydx + 2yx1 +x2 = 11 +x22 is :

  • y(1 + x2) = c + tan-1(x)

  • ylog1 + x2 = c + tan-1x

  • y1 + x2 = c + tan-1x

  • y1 + x2 = c + sin-1x


Advertisement
575.

The solution of the differential equation xdy - ydx = x2 + y2dx is :

  • x+  x2 + y2 = cx2

  • y-  x2 + y2 = cx

  • x -  x2 + y2 = cx

  • y+  x2 + y2 = cx2


576.

The solution of the differential equation dydx = ex - y + x2e- y is :

  • y = ex - y + x2e- y + c

  • ey - ex = 13x3 + c

  • ey + ex = 13x3 + c

  • ex - ey = 13x3 + c


Advertisement

577.

The integrating factor of the differential equation dydx + 1xy = 3x is :

  • x

  • in x

  • 0


A.

x

Given differential equationdydx + 1xy = 3x         IF = e1xdx = elogx = x


Advertisement
578.

The solution of the differential equation sec2(x)tan(y))dx + sec2(y)tan(x))dy = 0 is :

  • tanytanx = c

  • tanytanx = c

  • tan2x tany= c

  • None of these


Advertisement
579.

The differential equation of all straight lines passing through origin is :

  • y = xdydx

  • dydx = y + x

  • dydx = y - x

  • None of these


580.

To reduce the differential equation dydx = Py = Qx . yn to the linear form, the substitution is :

  • v = 1yn

  • v = 1yn - 1

  • v = yn

  • v = yn - 1


Advertisement