The general solution of the differential equation dydx 

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

581.

Integrating factor of the differential equation dydx +Pxy = Qx is :

  • P dx

  • Q dx

  • eP dx

  • eQ dx


Advertisement

582.

The general solution of the differential equation dydx +  1 + cos2y1 - cos2y = 0 is given by

  • tany + cotx = c

  • tany - cotx = c

  • tanx - coty = c

  • tanx + coty = c


B.

tany - cotx = c

We have, dydx +  1 + cos2y1 - cos2y = 0 dydx = - 1 + cos2y1 - cos2y           = - 1 +2cos2y - 11 - 1 - 2sin2x dydx = 2cos2y2sin2x     dycos2y = - dxsin2x sec2ydy = - csc2xdx         tany = cotx + c tany - cotx = c


Advertisement
583.

The degree of the differential equation 1 + dydx234 = d2ydx213 is

  • 2

  • 4

  • 9

  • 1


584.

The differential equation for which sin-1(x) + sin-1(y) = c is given by

  • 1 - x2dy + 1  - y2dx = 0

  • 1 - x2dx + 1  - y2dy = 0

  • 1 - x2dx - 1  - y2dy = 0

  • 1 - x2dy - 1  - y2dx = 0


Advertisement
585.

The differential of ex3 with respect to log(x) is

  • ex3

  • 3x2ex3 + 3x2

  • 3x2ex3

  • 3x3ex3


586.

Which of the following functions is a solution of the differential equation ?

dydx2 - xdydx + y = 0

  • y = 2x - 4

  • y = 2x2 - 4

  • y = 2

  • y = 2x


587.

y = aemx + be- mx satisfies which of the following differential equations

  • dydx + my = 0

  • dydx - my = 0

  • d2ydx2 - m2y = 0

  • d2ydx2 + m2y = 0


588.

Solution of the differential equation dxx + dyy = 0 is

  • 1x + 1y = c

  • log(x)log(y) = c

  • xy = c

  • x + y = c


Advertisement
589.

The differential equation representing a family of circles touchmg the Y-axis at the origin is

  • x2 +y2 - 2xydydx = 0

  • x2 +y2 + 2xydydx = 0

  • x2 -y2 - 2xydydx = 0

  • x2 -y2 + 2xydydx = 0


590.

The general solution of the differential equation (2x - y + 1)dx + (2y - x + 1) dy = 0 is

  • x+ y2 + xy - x + y = c

  • x+ y2 - xy + x + y = c

  • x2 - y2 + xy - x + y = c

  • x2 - y2 - xy + x + y = c


Advertisement