The integrating factor of the differential equation x .

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

611.

Integrating factor of xdydx - y = x4 - 3x is

  • x

  • log(x)

  • 1x

  • - x


612.

General solution of differential equations dydx + y = 1y  1 is

  • log11 - y = x + C

  • log1 - y = x + C

  • log1 + y = x + C

  • log11 - y = - x + C


613.

The degree of the differential equation 1 + dydx22 = d2ydx2 is

  • 3

  • 2

  • 1

  • 4


Advertisement

614.

The integrating factor of the differential equation x . dydx + 2y = x2 is x  0

  • x

  • logx

  • x2

  • elogx


C.

x2

We have, x . dydx + 2y = x2              dydx + 2xy = xThe above dlfferential equation is a linear differential equation Integrating factor = e2xdx                                 = e2logx                                 = elogx2                                 = x2


Advertisement
Advertisement
615.

The order of the differential equation

ydydx = xdydx + dydx3 is

  • 1

  • 2

  • 3

  • 4


616.

The general solution of the differential equation (x + y)dx + xdy = 0 is

  • x2 + y2 = c

  • 2x2 - y2

  • x2 + 2xy = c

  • y2 + 2xy = c


617.

The order and degree of the differential 1 + 3dydx23 = 4d3ydx3 are

  • 1, 2/3

  • 3, 1

  • 3, 3

  • 1, 2


618.

The differential equation of all straight lines passing through the point (1, - 1)is

  • y = x + 1dydx + 1

  • y = x + 1dydx - 1

  • y = x - 1dydx + 1

  • y = x - 1dydx - 1


Advertisement
619.

The solution of the differential equation d2ydx2 = e- 2x is

  • y = e- 2x4

  • y = e- 2x4 + cx + d

  • y = e- 2x4 + cx2 + d

  • y = e- 2x4 + c + d


620.

The solution of the differential equation dydx + sin2y = 0 is

  • x = coty + c

  • y = cotx + c

  • x = 2cscycoty + c

  • y = 2sinycosy + c


Advertisement