The differential equation of the equation y2 = m(x2 - a2) is fro

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

621.

Family y = Ax + A3 ofcurve is represented by the differential equation ofdegree

  • 3

  • 2

  • 1

  • None of these


622.

The degree and order of the differential equation of the family of all parabolas whose axis is X-axis, are respectively

  • 2, 1

  • 1, 2

  • 3, 2

  • 2, 3


623.

Solution of the differential equation ydx - xdy = x2ydx

  • yex2 = cx2

  • ye- x2 = cx2

  • y2ex2 = cx2

  • y2e- x2 = cx2


624.

The solution of the differential equation 1 + y2 + x - etan-1ydydx = 0 is

  • x - 2 = e2tan-1y + c

  • 2xetan-1y = e2tan-1y + c

  • xetan-1y = tan-1y + c

  • xe2tan-1y = etan-1y + c


Advertisement
625.

Solution of the differential equation (x + y - 1)dx + (2x+ 2y - 3)dy = 0

  • y + x + log (x + y - 2) = c

  • y + 2x + log (x + y - 2) = c

  • 2y + x + log (x + y - 2) = c

  • 2y + 2x + log (x + y - 2) = c


626.

The differential equation for the family of curve x2 + y2 - 2ay = 0, where a is an arbitrary constant, is

  • 2(x2 - y2)y' = xy

  • 2(x2 + y2)y' = xy

  • (x2 - y2)y' = 2xy

  • (x2 + y2)y' = 2xy


627.

Solution of the differential equation cosxdydx + ysinx = 1 is

  • ysecx + tanx = c

  • ysecx = tanx + c

  • ytanx = secx + c

  • ytanx = secxtanx + c


628.

The solution of the differential equation ydx + (x + x2y)dy = 0 is

  • - 1xy = c

  • - 1xy + logy = c

  • 1xy = logy + c

  • logy = cx


Advertisement
Advertisement

629.

The differential equation of the equation y2 = m(x2 - a2) is

  • ydydx = yd2ydx2 + dydx2x

  • ydydx = yd2ydx2 - dydx2x

  • yd2ydx2 = yd2ydx2 + dydx2x

  • None of the above


A.

ydydx = yd2ydx2 + dydx2x

The given equation isy2 = mx2 - a2        ...iOn differentiating w.r.t. x, we get 2ydydx = m2x  ydydx = mx           ...iiAgain, differentiating w.r.t. x, we getyd2ydx2 + dydx2xOn putting the value of m in Eq. (ii), we getydydx = yd2ydx2 + dydx2x


Advertisement
630.

dydx = ax +hby + k will be parabola, if

  • a = 0

  • b = 1

  • a = 1

  • None of these


Advertisement