The general solution of the differential equation ydx + (1 + x2)

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

631.

The number of real solutions of tan-1xx + 1 + sin-1x2 + x + 1 = π2 is

  • zero

  • one

  • two

  • infinite


632.

The differential equation of all straight lines passing through the point (1, - 1), is

  • y = x + 1dydx + 1

  • y = x + 1dydx - 1

  • y = x - 1dydx + 1

  • y = x - 1dydx - 1


633.

Integrating factor of differential equation cosxdydx + ysinx = 1 is

  • cosx

  • tanx

  • secx

  • sinx


634.

The order and degree of the differential equation d2ydx2 + dydx13 + x14 = 0 are respectively

  • 2, 3

  • 3, 3

  • 2, 6

  • 2, 4


Advertisement
Advertisement

635.

The general solution of the differential equation ydx + (1 + x2) tan- 1(x)dy = 0, is

  • ytan-1x = c

  • xtan-1y = c

  • y + tan-1x = c

  • x + tan-1y = c


A.

ytan-1x = c

The given differential equation isydx + 1 + x2tan-1xdy = 0 ydx = - 1 + x2tan-1xdy 11 + x2tan-1xdx = - 1ydy logtan-1x + logy = logc                     ytan-1x = c


Advertisement
636.

Solution of differential equation dydx = 2xy is

  • y = cex2

  • y2 = 2x2 + c

  • y = ce- x2

  • y = x2 + c


637.

The second order differential equation is

  • y' + x = y2

  • y'y'' + y = sin(x)

  • y''' + y'' + y = 0

  • y' = y


638.

The solution of the differential equation dydx - yx = 1 is

  • x2loge(x) + y = c

  • xloge(x) + cx = y

  • x2loge(x) - y = c

  • xloge(x) + y = cx


Advertisement
639.

An integrating factor of the differential equation 1 - x2dydx - xy = 1, is

  • - x

  • x1 - x2

  • 1 - x2

  • 12log1 - x2


640.

Solve dydxtany = sinx + y + sinx - y

  • secx - 12tany = c

  • logsinx + y = c

  • secx + tany = c

  • secy + 2cosx = c


Advertisement