Find the differential equation of curves y = Aex + Be-x fordiffer

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement

641.

Find the differential equation of curves y = Aex + Be-x fordifferent values of A and B

  • d2ydx2 - 2y = 0

  • d2ydx2 = y

  • d2ydx2 = 4y + 3

  • d2ydx2 + y = 0


B.

d2ydx2 = y

Given curve is,y = Aex + Be-x     ...iOn differentiatmg w.r.t. x, we getdydx = Aex - Be-xAgain on differentiating, we getd2ydx2 = Aex + Be-xd2ydx2 = y       fromEq. (i)


Advertisement
642.

Solve dydx = y2xy - x2

  • y = cex/y

  • y = ce-y/x + x

  • y = cey/x

  • xy = cey/x


643.

Solve xcosxdydx + yxsinx + cosx = 1

  • y = xtanx + sinx +c

  • x = ytanx + c

  • yxsecx = tanx + c

  • xycosx = x +c


644.

Differential equation of the family of curve y = a cos(µx) + b sin(µx), where a, b are arbitrary constants, is given by

  • d2ydx2 + μy = 0

  • d2ydx2 + μ2y = 0

  • d2ydx2 - μ2y = 0

  • None of these


Advertisement
645.

The differential equation of all circles which pass through the origin and whose centres lie on y-axis is

  • x2 - y2dydx - 2xy = 0

  • x2 - y2dydx + 2xy = 0

  • x2 - y2dydx - xy = 0

  • x2 - y2dydx + xy = 0


646.

The differential equation of the family of curve y = Ae3x + Be5x, where A, B are arbitrary constants, is

  • d2ydx2 + 8dydx + 15 = 0

  • d2ydx2 - 8dydx + 15 = 0

  • d2ydx2 - dydx + y = 0

  • None of these


647.

Solution of the differential equation xdydx = y + x2 + y2 is

  • y - x2 + y2 = cx2

  • y + x2 + y2 = cx2

  • x + x2 + y2 = cy2

  • x - x2 + y2 = cy2


648.

The differential equation whose solution represents the family y = ae3x + bex is given by

  • d2ydx2 - 4dydx - 3y = 0

  • d2ydx2 + 4dydx - 3y = 0

  • d2ydx2 - 4dydx + 3y = 0

  • None of the above


Advertisement
649.

Solve 2dydx = yx + yx2

  • y = x + Cxy

  • y = x - Cxy

  • y = x + Cyx

  • y = x + Cy


650.

Solve x +2y3dydx = y, y >0

  • y = x3 + Cy

  • x = y3 + Cy

  • y = x3 - Cy

  • x = y3 - Cy


Advertisement