The order and degree of the differential equation y'4 =

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

661.

The equation of the curve through the point (1, 0), whose slope is y - 1x2 + x, is

  • 2x(y - 1) + x + 1 = 0

  • (x + 1)(y - 1) + 2x = 0

  • x(y - 1)(x + 1) + 2 = 0

  • None of these


662.

The solution of the equation dydx = 1x + y + 1 is

  • x + y = Cey - 2

  • x + y = Clog(y) - 4

  • log(x+ y + 2) = Cy

  • log(x + y + 2) = C + y


663.

The solution of differential equation (ylog(x) - 1)ydx = xdy is

  • ylogex + Cx = 1

  • logxe + Cxx = y

  • logCx2 + ex2y = x

  • None of these


664.

The solution of the differential equation a + xdydx + xy = 0 is

  • y = Ce232a  - xx + a

  • y = Ce23a  - xx + a

  • y = Ce232a  + xx + a

  • y = Ce- 232a  - xx + a


Advertisement
665.

The general solution of the differential equation dydx = ytanx - y2secx is

  • tanx = C + secxy

  • secy = C + tanyx

  • secx = C + tanxy

  • tany = C + secxx


666.

The degree of the differential equation satisfying 1 - x2 + 1 - y2 = ax - y is

  • 1

  • 2

  • 3

  • None of the above


667.

The solution of the differential equation y - xdydx = ay2 + dydx is

  • y = C(x + a)(1 - ay)

  • y = C(x + a)(a + ay)

  • y = C(x - a)(1 - ay)

  • None of the above


668.

The solution of differential equation (2y - 1)dx - (2x + 3)dy = 0 will be

  • 2x - 12y + 3 = C

  • 2y + 12x - 3 = C

  • 2x + 32y - 1 = C

  • 2x - 12y - 1 = C


Advertisement
669.

The solution of the differential equation dydx = xlogx2 + xsiny + ycosy will be

  • ysin(y) = x2log(x) + C

  • ysin(y) = x2 + C

  • ysin(y) = x2 + lo(x) + C

  • ysin(y) = xlog(x) + C


Advertisement

670.

The order and degree of the differential equation y'4 = 1 - y''' are respectively.

  • 3, 4

  • 1, 2

  • 3, 2

  • 3, 1


D.

3, 1

We have, y'4 = 1 - y''' dydx4 = 1 - d3ydx3On squaring both sides, we get    dydx8 = 1 - d3ydx3 d3ydx3 + dydx8 = 1Hence, order = 3 and degree = 1


Advertisement
Advertisement