The differential equation of the family of circles having centre

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement

671.

The differential equation of the family of circles having centre on Y-axis and radius 4 is

  • x2 - 4dydx2 + x2 = 0

  • x2 - 9dydx2 + x2 = 0

  • x2 - 9dydx + x2 = 0

  • x2 - 16dydx2 + x2 = 0


D.

x2 - 16dydx2 + x2 = 0

Equation of circles having centre on Y-axisi.e., (0, a) (say) and radius 4 is     x2 + (y - a)2 = 16                ...iOn differentiating w.r.t. x, we get2x + 2y - adydx = 0            y - a = - xdydx        ...(ii)On substituting the value of (y- a) in Eq. (i), we get       x2 + - xdydx2 = 16 x2dydx2 + x2 = 16dydx2 x2 - 16dydx2 + x2 = 0


Advertisement
672.

The solution of the differential equation 1 + y2 + x - etan-1ydydx = 0 is given by

  • x - 2 = ketan-1y

  • 2xetan-1y = e2tan-1y + k

  • xetan-1y = tan-1y + k

  • xetan-1y = etan-1y + k


673.

The integrating factor of the differential equation dydx + yx = x3 - 3 will be

  • x

  • log(x)

  • - x

  • ex


674.

The solution of xdx + ydy = x2ydy - xy2dx is

  • x2 - 1 = C(1 + y2)

  • x2 + 1 = C(1 - y2)

  • x2 - 1 = C(1 - y2)

  • x2 + 1 = C(1 - y2)


Advertisement
675.

The solution of x2 + y2dydx = 4 is

  • x2 + y2 = 12x + C

  • x2 + y2 = 3x + C

  • x2 + y2 = 8x + C

  • x3 + y3 = 12x + C


676.

The solution of dydx + y = ex is

  • 2y = e2x + C

  • 2yex = ex + C

  • 2yex = e2x + C

  • 2ye2x = 2ex + C


677.

Order of the differential equation of the family of all concentric circles centered at (h, k) is

  • 1

  • 2

  • 3

  • 5


678.

The solution of dydx + 13y = 1 is

  • y = 3 + cex3

  • y = 3 + ce - x3

  • 3y = c + e x3

  • y2 + x + x2 + 2 = ce2x


Advertisement
679.

y + x2 =dydx has the solution

  • y + x2 + 2x + 2 = cex

  • y + x + 2x2 + 2 = cex

  • y2 + x + x2 + 2 = ce2x

  • y + x + x2 + 2 = ce2x


680.

The solution of dydx = xy - 13 is

  • x23 + y23 = c

  • y23 - x23 = c

  • x13  +  y13 = c

  • y13 - x13 = c


Advertisement