The differential equation of the family of parabola with focus as

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement

681.

The differential equation of the family of parabola with focus as the origin and the axis as X-axis, is

  • ydydx2 + 4xdydx = 4y

  • - ydydx2 = 2xdydx - y

  • ydydx2 + y = 2xydydx

  • ydydx2 + 2xydydx + y = 0


B.

- ydydx2 = 2xdydx - y

Given that,Focus S = 0, 0, let Px, y be nay point on the parabola.since, SP2 = PM2 x - 02 + y - 02 = x + a2 x2 + y2 = x2 + a2 +2xa          y2 = 2ax +a2            ...i    2ydydx = 2a                      ...iiFrom Eqs. (i) and (ii), we get              y2 = 2ydydxx + ydydx2 y2dydx2 + 2xydydx = y - ydydx2 = 2xdydx - y


Advertisement
682.

Soution of dydx = xlogx2 + xsiny + ycosy is

  • ysiny = x2logx + C

  • ysiny = x2 + C

  • ysiny = x2 + logx

  • ysiny = xlogx + C


683.

The general solution of y2dx + x2 - xy + y2dy = 0 is :

  • tan-1yx = logy + C

  • 2tan-1xy + logx + C = 0

  • logy + x2 + y2 + logy + C = 0

  • sinh-1xy + logy + C = 0


684.

Integrating factor of (x + 2y3)dydx = y2 is

  • e1y

  • e- 1y

  • y

  • - 1y


Advertisement
685.

y = Aex + Be2x + Ce3x satisfies the differential equation

  • y''' - 6y'' + 11y' - 6y = 0

  • y''' + 6y'' + 11y' + 6y = 0

  • y''' + 6y'' - 11y' + 6y = 0

  • y''' - 6y'' - 11y' + 6y = 0


686.

Observe the following statements

A. Integrating factor of dydx + y = x2 is ex

R. Integrating factor of dydx + Pxy = Qx is ePxdx

  • A is true, R is false

  • A is false, R is true

  • A is true, R is true, R  A

  • Both are false


687.

If dx + dy = (x + y)dx - dy, then logx + y = ?

  • x + y + c

  • x + 2y + c

  • x - y + c

  • 2x + y + c


688.

If x2y - x3dydx = y4cosx, then x3y- 3 is equal to

  • sin(x)

  • 2sin(x) + c

  • - 3sin(x) + c

  • 3cos(x) + c


Advertisement
689.

Observe the following statements

I. If dy +2xydx = 2e- x2dx, then yex2 = 2x + c,II. If ye- x2 - 2x = c, thendx = 2e- x2 - 2xydywhich of the following is correct statement

  • Both I and II are true

  • Neither I nor II is true

  • I is false, But II is true

  • I is true, But II is false


690.

If dydx = y +xtanyxx, then sinyx is equal to

  • cx2

  • cx

  • cx3

  • cx4


Advertisement