The solution of x + y + 1dyd

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

691.

The solution of x2 + y2dx = 2xydy is :

  • cx2 - y2 = x

  • cx2 + y2 = x

  • cx2 - y2 = y

  • cx2 + y2 = y


692.

The solution of 1 + x2dydx + 2xy - 4x2 = 0 is :

  • 3x1 + y2 = 4y3 + c

  • 3y(1 + x2) = 4x3 + c

  • 3x(1 + y2) = 4y3 + c

  • 3y(1 + y2) = 4x3 + c


693.

The solution of dxdy + xy = x2 is :

  • 1y = cx - xlogx

  • 1x = cy - ylogy

  • 1x = cx + xlogy

  • 1y = cx - ylogx


694.

The differential equation obtained by eliminating the arbitrary constants a and b from xy = aex + be- x is

  • xd2ydx2 +2dydx - xy = 0

  • xd2ydx2 +2ydydx - xy = 0

  • xd2ydx2 +2dydx + xy = 0

  • d2ydx2 +dydx - xy = 0


Advertisement
Advertisement

695.

The solution of x + y +1dydx = 1 is

  • y = (x + 2) + cex

  • y = - (x + 2) + cex

  • x = - (y + 2) + cey

  • x = (y + 2)2 + cey


C.

x = - (y + 2) + cey

Given x + y +1dydx = 1  dxdy = x + y + 1dxdy - x = y + 1 which is linear IF = e - 1dy = e - yxe - y = y + 1e - ydy +c xe - y = - ye - y  +  1 . e - y dy +e - y  . - 1 + cxe - y = - ye - y  - e - y  - e - y  + cxe - y = -y +2e - y  + c         x = -y + 2 +cey


Advertisement
696.

The solution of dydx = y2xy - x2 is

  • eyx = kx

  • eyx = ky

  • exy = kx

  • e - yx = ky


697.

The solution of dydx +1 = ex +y is

  • e - x + y +x + c = 0

  • e - x + y -x + c = 0

  • e x + y +x + c = 0

  • e x + y -x + c = 0


698.

The solution of the differential equation

dydx = xy + yxy + x is

  • x + y = logcyx

  • x + y = logcxy

  • x - y - logcxy

  •  y - x = logcxy


Advertisement
699.

The solution of the differential equation

dydx = x - 2y + 12x - 4y is

  • (x - 2y)2 + 2x = c

  • (x - 2y)2 + x = c

  • (x - 2y)2 + 2x2 = c

  • (x - 2y) + x2 = c


700.

The solution of the differential equation dydx - ytanx = exsecx is

  • y = excosx + c

  • ycosx = ex + c

  • y = exsinx + c 

  • ysinx = ex + c


Advertisement