The solution of cos(y) + (xsin(y) - 1)dy/dx = 0 is,  from M

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

711.

If cos-1yb = 2logx2, where x > 0, thenx2d2ydx2 + xdydx = ?

  • 4y

  • - 4y

  • 0

  • - 8y


712.

If the curves x2 + py= l and qx2 + y2 = l are orthogonal to each other, then

  • p - q = 2

  • 1p - 1q = 2

  • 1p + 1q = - 2

  • 1p + 1q = 2


713.

The focal length of a mirror is given by 2f = 1v - 1u. In finding the values of u and v, the errors are equal to ' 'p'. Then, the relative error in f is

  • p21u + 1v

  • p1u + 1v

  • p21u - 1v

  • p1u - 1v


714.

If u = logx3 +y3 + z3 - 3xyz, then x + y + zux + uy +uz = ?

  • 0

  • x - y + z

  • 2

  • 3


Advertisement
715.

An integrating factor of the equation 1 + y +x2ydx + x + x3dy = 0 is

  • ex

  • x2

  • 1x

  • x


716.

The solution of the differential equationdydx - 2ytan2x = exsec2x is

  • ysin2x = ex + C

  • ycos2x = ex . 1dx + C

  • y = excos2x + C

  • ycos2x + ex = C


717.

If fx = x1 + x and gx = ffx, then g'x = 

  • 12x + 32

  • 1x + 12

  • 1x2

  • 12x + 12


718.

The differential equation of the family of parabolas with vertex at (0, - 1) and having axis along the Y-axis is

  • yy' + 2xy + 1 = 0

  • xy' + y + 1 = 0

  • xy' - 2y - 2

  • xy' - y - 1 = 0


Advertisement
719.

The solution of xdydx = y + eyx with y1 = 0 is

  • 1 = logx + e yx

  • logx = e - yx

  • 1 = 2logx + e - yx

  • logx + e - yx = 1


Advertisement

720.

The solution of cos(y) + (xsin(y) - 1)dy/dx = 0 is, 

  • xsecy = tany + C

  • tany - secy = Cx

  • tany + secy = Cx

  • xsecy + tany = C


A.

xsecy = tany + C

Given differential equatio can be rewritten ascosydydx + xsiny - 1 = 0 dxdy + tanyx = secyIt is linear differential equation of the formdxdy + Px = Q IF = ePdy = etanydy= elogsecy = secy Solution isx secy =  sec2ydyx secy =  tany + C


Advertisement
Advertisement