∫1 + x - x- 1ex + x- 1dx is equal to
x + 1ex + x- 1 + C
x - 1ex + x- 1 + C
xex + x- 1 + C
xex + x- 1 x + C
If f(x) = x - [x], for every real number x, where [x] is the integral part of x. Then ∫- 11f(x)dx is equal to
1
2
0
12
The value of integral
∫- 11x + 1x - 12 + x + 1x - 12 - 212dx is
log43
4log34
4log43
log34
∫dxsinx - cosx + 2 equals to
- 12tanx2 + π8 + C
12tanx2 + π8 + C
12cotx2 + π8 + C
- 12cotx2 + π8 + C
The value of I = ∫01xx - 12dx
13
14
18
None of these
The value of integral ∫011 - x1 + xdx is
π2 + 1
π2 - 1
- 1
Evaluate ∫x2 + 4x4 + 16dx.
122tan-1x2 - 42x2 + C
122tan-1x2 - 422 + C
122tan-1x2 - 4x2 + C
Evaluate ∫π43π411 + cosxdx
- 2
1/2
- 1/2
If ∫fxdx = fx, then ∫fx2dx is equal to
12fx2
fx3
fx33
fx2
∫sin-12x + 24x2 + 8x + 13dx is equal to
x + 1tan-12x + 23 - 34log4x2 + 8x + 139 + c
32tan-12x + 23 - 34og4x2 + 8x + 139 + c
x + 1tan-12x + 23 - 32log4x2 + 8x + 13 + c
32x + 1tan-12x + 23 - 34log4x2 + 8x + 13 + c