∫x + 1x + 27x + 3dx is equal to
x + 21010 - x + 288 + c
x + 1102 - x + 288 - x + 322+ c
x + 21010 + c
x + 122 + x + 288 + x + 322 + c
∫x2 + 1x + 1dx is equal to
x + 1727 - 2x + 1525 + 2x + 1323 + c
2x + 1727 - 2x + 1525 + 2x + 1323 + c
x + 1727 - 2x + 1525 + c
x + 172 + x + 152 + x + 132 + c
∫1 + xx + e- xdx is equal to
logx - e- x
logx + e- x
log1 + xex + c
1 + xex2 + c
∫logx + 1 + x21 + x2dx is equal to
logx + 1 + x22 + c
xlogx + 1 + x2 + c
12logx + 1 + x2 + c
x2logx + 1 + x2 + c
∫dx1 - e2x is equal to
loge- x + e- 2x - 1 + c
logex + e2x - 1 + c
- loge- x + e- 2x - 1 + c
- loge- 2x + e- 2x - 1 + c
∫cosx + xsinxx2 cosxdx is equal to
logsinx1 + cosx + c
logsinxx + cosx + c
log2sinxx + cosx + c
logxx + cosx + c
The integral ∫012sin-1x2xdx equals
∫0π6xdxtanx
∫0π62tanxdx
∫0π22xdxtanx
∫0π62xsinxdx
If ∫0af2a - xdx = m and ∫0afxdx = n, then ∫02afxdx is equal to
2m + n
m + 2n
m - n
m + n
∫- 100100fxdx is equal to
∫- 100100fx2dx
∫- 100100f- x2dx
∫- 100100f1xdx
∫- 100100f- xdx
∫- 11ex3 + e- x3ex - e- xdx is equal to
e22 - 2e
e2 - 2e
2(e2 - e)
0